Normalized defining polynomial
\( x^{20} - 8 x^{19} + 40 x^{18} - 144 x^{17} + 364 x^{16} - 817 x^{15} + 1248 x^{14} - 2606 x^{13} + 3734 x^{12} - 10791 x^{11} + 15328 x^{10} - 33835 x^{9} + 26950 x^{8} - 41267 x^{7} + 25 x^{6} - 16655 x^{5} - 20149 x^{4} - 14095 x^{3} - 9869 x^{2} - 2082 x - 1047 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19268986807514523249663129641547=-\,3^{10}\cdot 883^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 883$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{17} + \frac{1}{5} a^{16} - \frac{2}{5} a^{15} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{4857566328818000889225543271679389360266565} a^{19} - \frac{457827510596156250936696873500402204818708}{4857566328818000889225543271679389360266565} a^{18} - \frac{367571605940867574200900827225247143930844}{4857566328818000889225543271679389360266565} a^{17} - \frac{791961227670813346491606976806969446285717}{4857566328818000889225543271679389360266565} a^{16} - \frac{30098884337571892124536653582064107189825}{971513265763600177845108654335877872053313} a^{15} - \frac{60890677096203759465207750978543120847849}{4857566328818000889225543271679389360266565} a^{14} - \frac{1395120709334846001483954102105152658443217}{4857566328818000889225543271679389360266565} a^{13} + \frac{117912936885276931715552366478401301825879}{971513265763600177845108654335877872053313} a^{12} - \frac{1160696240516544097779146253564248914613773}{4857566328818000889225543271679389360266565} a^{11} + \frac{1111977964266914924170736427024647932966089}{4857566328818000889225543271679389360266565} a^{10} - \frac{262382938346124849585022246722902084241262}{971513265763600177845108654335877872053313} a^{9} - \frac{106476534552888703778752604851756549402411}{4857566328818000889225543271679389360266565} a^{8} - \frac{426456155203699145729637782339991822104840}{971513265763600177845108654335877872053313} a^{7} + \frac{1266130714871400404446831955039026697147597}{4857566328818000889225543271679389360266565} a^{6} + \frac{16199688083737858136600406520858791634727}{971513265763600177845108654335877872053313} a^{5} - \frac{1424046581779944211251511040181877254975433}{4857566328818000889225543271679389360266565} a^{4} - \frac{806397942283980529117533010804466368880429}{4857566328818000889225543271679389360266565} a^{3} - \frac{2330480857170412983085788882753643781843113}{4857566328818000889225543271679389360266565} a^{2} + \frac{840128286294570456328516907062935917779727}{4857566328818000889225543271679389360266565} a + \frac{374050187921686198404864646851445105763268}{971513265763600177845108654335877872053313}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38593491.3997 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 188 conjugacy class representatives for t20n968 are not computed |
| Character table for t20n968 is not computed |
Intermediate fields
| 5.5.7017201.1, 10.6.49241109874401.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 883 | Data not computed | ||||||