Normalized defining polynomial
\( x^{20} + 3 x^{18} - 5 x^{17} + 33 x^{16} - 23 x^{15} + 88 x^{14} - 201 x^{13} + 334 x^{12} - 798 x^{11} + 464 x^{10} - 2257 x^{9} - 219 x^{8} - 5621 x^{7} - 6131 x^{6} - 6021 x^{5} - 8743 x^{4} - 1563 x^{3} - 835 x^{2} - 3246 x - 241 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-182567274194490055859030886811=-\,11^{16}\cdot 331^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{76290872923850835191787045048382600393009} a^{19} - \frac{781564539355773372303947811537364896278}{76290872923850835191787045048382600393009} a^{18} - \frac{6818627889668659559737796278506720788714}{76290872923850835191787045048382600393009} a^{17} + \frac{11850313606347947170702379954586424988460}{76290872923850835191787045048382600393009} a^{16} + \frac{19841740351090359187495896173663334807187}{76290872923850835191787045048382600393009} a^{15} + \frac{9980839728715075765309503571538242160578}{76290872923850835191787045048382600393009} a^{14} + \frac{30498361097028202802684121749055276723426}{76290872923850835191787045048382600393009} a^{13} - \frac{1551397303341798876762585741511936649934}{76290872923850835191787045048382600393009} a^{12} + \frac{27234738913434019484586493770542534998626}{76290872923850835191787045048382600393009} a^{11} - \frac{25762250801068266249946121357813210334108}{76290872923850835191787045048382600393009} a^{10} - \frac{22229951363150359253211130954848327718434}{76290872923850835191787045048382600393009} a^{9} + \frac{24266924002510315715105485118024029321469}{76290872923850835191787045048382600393009} a^{8} - \frac{18273882855602065410402895453597612572938}{76290872923850835191787045048382600393009} a^{7} - \frac{37792900844696824776354901233589152070599}{76290872923850835191787045048382600393009} a^{6} + \frac{1040297749129328181468739807082525320434}{76290872923850835191787045048382600393009} a^{5} + \frac{22652881675033652794914970710562560991200}{76290872923850835191787045048382600393009} a^{4} - \frac{3240037086961851790813955409866067970804}{76290872923850835191787045048382600393009} a^{3} + \frac{36831262910249046335449091502369314888234}{76290872923850835191787045048382600393009} a^{2} - \frac{16361880019457197177754205091371766421846}{76290872923850835191787045048382600393009} a - \frac{20514278230246785289583648392373138053556}{76290872923850835191787045048382600393009}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1032943.16606 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.70952789611.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 331 | Data not computed | ||||||