Normalized defining polynomial
\( x^{20} - 2 x^{19} + 9 x^{18} - 31 x^{17} + 72 x^{16} - 155 x^{15} + 371 x^{14} - 593 x^{13} + 920 x^{12} - 1121 x^{11} + 810 x^{10} + 1297 x^{9} - 4485 x^{8} + 10655 x^{7} - 18446 x^{6} + 29415 x^{5} - 33613 x^{4} + 41746 x^{3} - 40635 x^{2} + 33365 x - 11659 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-182567274194490055859030886811=-\,11^{16}\cdot 331^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{9}{23} a^{15} - \frac{11}{23} a^{14} - \frac{2}{23} a^{13} + \frac{11}{23} a^{12} - \frac{6}{23} a^{11} - \frac{3}{23} a^{10} - \frac{8}{23} a^{9} + \frac{4}{23} a^{8} - \frac{3}{23} a^{7} + \frac{8}{23} a^{6} - \frac{3}{23} a^{5} - \frac{10}{23} a^{4} - \frac{6}{23} a^{3} + \frac{6}{23} a^{2} - \frac{11}{23} a + \frac{2}{23}$, $\frac{1}{23} a^{17} - \frac{9}{23} a^{14} - \frac{7}{23} a^{13} + \frac{1}{23} a^{12} - \frac{11}{23} a^{11} + \frac{11}{23} a^{10} + \frac{1}{23} a^{9} + \frac{10}{23} a^{8} + \frac{4}{23} a^{7} + \frac{9}{23} a^{5} - \frac{4}{23} a^{4} - \frac{2}{23} a^{3} - \frac{3}{23} a^{2} - \frac{5}{23} a - \frac{5}{23}$, $\frac{1}{2047} a^{18} + \frac{14}{2047} a^{17} + \frac{40}{2047} a^{16} + \frac{666}{2047} a^{15} + \frac{71}{2047} a^{14} - \frac{821}{2047} a^{13} - \frac{569}{2047} a^{12} + \frac{215}{2047} a^{11} + \frac{702}{2047} a^{10} + \frac{923}{2047} a^{9} - \frac{915}{2047} a^{8} + \frac{580}{2047} a^{7} + \frac{720}{2047} a^{6} - \frac{320}{2047} a^{5} + \frac{255}{2047} a^{4} - \frac{64}{2047} a^{3} - \frac{14}{2047} a^{2} + \frac{474}{2047} a - \frac{11}{23}$, $\frac{1}{62591921438950698491219423203510153} a^{19} - \frac{5360433574495800647955508340737}{62591921438950698491219423203510153} a^{18} - \frac{1195477527100738670909559346682754}{62591921438950698491219423203510153} a^{17} + \frac{137523898030121258425285797120755}{62591921438950698491219423203510153} a^{16} + \frac{24801249083363446452896345070334306}{62591921438950698491219423203510153} a^{15} - \frac{8449527375730576914644110623638585}{62591921438950698491219423203510153} a^{14} - \frac{15834639155761011278106511197575879}{62591921438950698491219423203510153} a^{13} + \frac{25433252149034482602162213714702606}{62591921438950698491219423203510153} a^{12} - \frac{10913793663167414867519151152210183}{62591921438950698491219423203510153} a^{11} + \frac{371385420889209524095939703626898}{62591921438950698491219423203510153} a^{10} + \frac{13814550854638867949062746558133501}{62591921438950698491219423203510153} a^{9} + \frac{27923538208627383418116775791603845}{62591921438950698491219423203510153} a^{8} + \frac{15039166089472773570495939430184480}{62591921438950698491219423203510153} a^{7} + \frac{25652565781704122692426207023769849}{62591921438950698491219423203510153} a^{6} + \frac{25374293718409376135973774580381716}{62591921438950698491219423203510153} a^{5} + \frac{25606461673933290718296930773097055}{62591921438950698491219423203510153} a^{4} + \frac{4647702300221364077222281041075404}{62591921438950698491219423203510153} a^{3} - \frac{17644631440991150352628576703468329}{62591921438950698491219423203510153} a^{2} + \frac{13147307676495353041521917757060824}{62591921438950698491219423203510153} a - \frac{218707530713420633870789334964721}{703280016167985376305836215769777}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1032943.16606 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 50 conjugacy class representatives for t20n303 are not computed |
| Character table for t20n303 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.70952789611.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 331 | Data not computed | ||||||