Normalized defining polynomial
\( x^{20} - 6 x^{19} + 30 x^{18} - 115 x^{17} + 364 x^{16} - 1024 x^{15} + 2406 x^{14} - 5063 x^{13} + 9144 x^{12} - 14742 x^{11} + 20510 x^{10} - 24620 x^{9} + 24238 x^{8} - 19510 x^{7} + 12870 x^{6} - 7868 x^{5} + 4901 x^{4} - 3053 x^{3} + 1481 x^{2} - 514 x + 131 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18079489015266793067734899712=-\,2^{10}\cdot 11^{16}\cdot 727^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{481157131551923022042043409949043} a^{19} + \frac{224715468035793912760841776431485}{481157131551923022042043409949043} a^{18} - \frac{192573024785580001809177609915560}{481157131551923022042043409949043} a^{17} - \frac{237156106891935438998217547471775}{481157131551923022042043409949043} a^{16} - \frac{92729727491714667516478416653227}{481157131551923022042043409949043} a^{15} + \frac{204241444142167101366351691257500}{481157131551923022042043409949043} a^{14} - \frac{68512265494447552910707650854493}{481157131551923022042043409949043} a^{13} - \frac{85190761631129786079548035084939}{481157131551923022042043409949043} a^{12} - \frac{88860299648340353875673781724286}{481157131551923022042043409949043} a^{11} + \frac{9444871351454293298355812130529}{481157131551923022042043409949043} a^{10} + \frac{200277802819348478936744212906915}{481157131551923022042043409949043} a^{9} + \frac{79516392377559706298171341190349}{481157131551923022042043409949043} a^{8} - \frac{88451871982859088941750663413492}{481157131551923022042043409949043} a^{7} - \frac{29919180497389399660152648294972}{481157131551923022042043409949043} a^{6} + \frac{145334534208885577903234075559364}{481157131551923022042043409949043} a^{5} + \frac{75307066863433058475937367570449}{481157131551923022042043409949043} a^{4} + \frac{202024004846561714428503990600380}{481157131551923022042043409949043} a^{3} - \frac{85837901963042056933452795968353}{481157131551923022042043409949043} a^{2} + \frac{205609426218253834804525925008127}{481157131551923022042043409949043} a - \frac{205173780188024937610752370441969}{481157131551923022042043409949043}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 720668.779677 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||