Normalized defining polynomial
\( x^{20} - 6 x^{19} + 13 x^{18} - 4 x^{17} - 26 x^{16} + 55 x^{15} - 153 x^{14} + 528 x^{13} - 1033 x^{12} + 1368 x^{11} - 1527 x^{10} + 1833 x^{9} - 1759 x^{8} + 1108 x^{7} - 199 x^{6} - 548 x^{5} + 984 x^{4} - 777 x^{3} + 519 x^{2} - 641 x + 463 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18079489015266793067734899712=-\,2^{10}\cdot 11^{16}\cdot 727^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{178} a^{18} - \frac{7}{89} a^{17} + \frac{10}{89} a^{16} - \frac{29}{178} a^{15} - \frac{25}{178} a^{14} + \frac{7}{178} a^{13} + \frac{13}{178} a^{12} + \frac{45}{178} a^{11} + \frac{1}{178} a^{10} - \frac{36}{89} a^{9} - \frac{77}{178} a^{8} - \frac{24}{89} a^{7} - \frac{27}{89} a^{6} - \frac{3}{89} a^{5} - \frac{44}{89} a^{4} - \frac{15}{178} a^{3} + \frac{10}{89} a^{2} - \frac{37}{89} a - \frac{5}{89}$, $\frac{1}{2269020134736469129122687020978} a^{19} + \frac{2188572704554593787240285233}{2269020134736469129122687020978} a^{18} - \frac{472947206629988339566666160813}{2269020134736469129122687020978} a^{17} - \frac{41057139208588190857646667426}{1134510067368234564561343510489} a^{16} + \frac{392155960698430089340265679111}{2269020134736469129122687020978} a^{15} + \frac{307432118173325729651768828539}{2269020134736469129122687020978} a^{14} + \frac{418501913790946208802295408544}{1134510067368234564561343510489} a^{13} - \frac{408651901612127361971679065873}{2269020134736469129122687020978} a^{12} + \frac{789870089019978241960070612475}{2269020134736469129122687020978} a^{11} - \frac{486805838252551142895263437353}{1134510067368234564561343510489} a^{10} - \frac{382526668148109040345293920092}{1134510067368234564561343510489} a^{9} + \frac{2124284495724413400564614215}{25494608255465945271041427202} a^{8} + \frac{19802730322967935856855980333}{1134510067368234564561343510489} a^{7} - \frac{220769605355408416519108954401}{2269020134736469129122687020978} a^{6} + \frac{176951368160941294786627757389}{2269020134736469129122687020978} a^{5} + \frac{361454307665747137658720921937}{2269020134736469129122687020978} a^{4} + \frac{605640406724460669714499985945}{2269020134736469129122687020978} a^{3} + \frac{675715480558331416684967027753}{2269020134736469129122687020978} a^{2} - \frac{1065129173339229264753689862279}{2269020134736469129122687020978} a - \frac{428120641733997835728710570937}{2269020134736469129122687020978}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 839071.478682 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n747 are not computed |
| Character table for t20n747 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.155838906487.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 727 | Data not computed | ||||||