Normalized defining polynomial
\( x^{20} + 538 x^{18} + 59526 x^{16} - 8411745 x^{14} - 1395371322 x^{12} + 9530036138 x^{10} + 8603288846964 x^{8} + 351613585853425 x^{6} - 1875817034507589 x^{4} - 321799222643246666 x^{2} - 4337852776485437971 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1729797948719255084072017529251001251840000000000=-\,2^{20}\cdot 5^{10}\cdot 11^{4}\cdot 1630891^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $258.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 1630891$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{1630891} a^{16} + \frac{538}{1630891} a^{14} + \frac{59526}{1630891} a^{12} - \frac{257290}{1630891} a^{10} + \frac{671374}{1630891} a^{8} + \frac{740025}{1630891} a^{6} - \frac{403364}{1630891} a^{4} + \frac{32079}{1630891} a^{2}$, $\frac{1}{1630891} a^{17} + \frac{538}{1630891} a^{15} + \frac{59526}{1630891} a^{13} - \frac{257290}{1630891} a^{11} + \frac{671374}{1630891} a^{9} + \frac{740025}{1630891} a^{7} - \frac{403364}{1630891} a^{5} + \frac{32079}{1630891} a^{3}$, $\frac{1}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{18} - \frac{3643811975250418133985758425357031188258167616233445240266524529155892}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{16} - \frac{12160458210776675268081215034952653105297758942266395654310150684580668076110}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{14} - \frac{8638715543121341663939801224738553527401556693443225746925623647174040988370}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{12} + \frac{1124700392817236115313047835187406848321546432676494209011942889979556272322}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{10} + \frac{12065044765535614742182431361962005521995974451197151930954287903920539426471}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{8} + \frac{5604802100262782378482059586206605641861633717805273828557563758409957293225}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{6} - \frac{8262128905484941846755173478675939431438188564586550607988062642371227748193}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{4} + \frac{1394869784457099778616814862397116221641208368747872337552836816060835}{15413750071051564964035543574729581040414860192109790288497837418774091} a^{2} + \frac{1545812095716968987968339949016105292756114914911314393480659248}{9451122160249559881092938507067352165420534046793924479623615201}$, $\frac{1}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{19} - \frac{3643811975250418133985758425357031188258167616233445240266524529155892}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{17} - \frac{12160458210776675268081215034952653105297758942266395654310150684580668076110}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{15} - \frac{8638715543121341663939801224738553527401556693443225746925623647174040988370}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{13} + \frac{1124700392817236115313047835187406848321546432676494209011942889979556272322}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{11} + \frac{12065044765535614742182431361962005521995974451197151930954287903920539426471}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{9} + \frac{5604802100262782378482059586206605641861633717805273828557563758409957293225}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{7} - \frac{8262128905484941846755173478675939431438188564586550607988062642371227748193}{25138146267127357835760891696134301152583231753570127993398526565741896045081} a^{5} + \frac{1394869784457099778616814862397116221641208368747872337552836816060835}{15413750071051564964035543574729581040414860192109790288497837418774091} a^{3} + \frac{1545812095716968987968339949016105292756114914911314393480659248}{9451122160249559881092938507067352165420534046793924479623615201} a$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1022 are not computed |
| Character table for t20n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.8.616680659375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | R | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.7 | $x^{8} + 2 x^{6} + 4 x^{5} + 16$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.12.12.18 | $x^{12} + 80 x^{10} + 81 x^{8} - 160 x^{6} - 117 x^{4} + 80 x^{2} + 227$ | $2$ | $6$ | $12$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1630891 | Data not computed | ||||||