Normalized defining polynomial
\( x^{20} + 1215 x^{18} + 511759 x^{16} + 17027900 x^{14} - 63291398882 x^{12} - 26248097666138 x^{10} - 5251386273851037 x^{8} - 601902913742794431 x^{6} - 39929780990644264941 x^{4} - 1419239447710082479566 x^{2} - 20836737422938446707879 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-161565819652412899832686999834204280821760000000000=-\,2^{20}\cdot 5^{10}\cdot 27517559^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $323.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 27517559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{27517559} a^{16} + \frac{1215}{27517559} a^{14} + \frac{511759}{27517559} a^{12} - \frac{10489659}{27517559} a^{10} - \frac{1013182}{27517559} a^{8} - \frac{6215485}{27517559} a^{6} - \frac{8072246}{27517559} a^{4} + \frac{1439300}{27517559} a^{2}$, $\frac{1}{27517559} a^{17} + \frac{1215}{27517559} a^{15} + \frac{511759}{27517559} a^{13} - \frac{10489659}{27517559} a^{11} - \frac{1013182}{27517559} a^{9} - \frac{6215485}{27517559} a^{7} - \frac{8072246}{27517559} a^{5} + \frac{1439300}{27517559} a^{3}$, $\frac{1}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{18} - \frac{19350581563611523731252107655666006185122579647480911248296832686713556479142402}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{16} - \frac{401271061441635127878487544985387737585450487048846003032063140029847216086027327483833}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{14} + \frac{378135314252800535051625609843676281594186995529359501085982369198599360423433108492605}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{12} - \frac{47200790408450861915490526237479746211732447783138579651447926709086563278439110559982}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{10} + \frac{348178348746082101727162809102884525728528410436939858232871448189468959859114442521284}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{8} + \frac{451358870916322194699744130386305877038340045141942666350930439651591263046894554305691}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{6} + \frac{249615408863916472541302972050325706300493949028106162871742048787012899758830437102143}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{4} - \frac{965680024531821710028513457279889900526403898551694929258753428743575653334277}{39009503402183056664904742278493528496650131556055919239836560897376673988163843} a^{2} - \frac{505316206377483710267712388633530413803734156701818229132296855961072454}{1417622231760566286599212607429806128394242074889561215798122242506200277}$, $\frac{1}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{19} - \frac{19350581563611523731252107655666006185122579647480911248296832686713556479142402}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{17} - \frac{401271061441635127878487544985387737585450487048846003032063140029847216086027327483833}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{15} + \frac{378135314252800535051625609843676281594186995529359501085982369198599360423433108492605}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{13} - \frac{47200790408450861915490526237479746211732447783138579651447926709086563278439110559982}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{11} + \frac{348178348746082101727162809102884525728528410436939858232871448189468959859114442521284}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{9} + \frac{451358870916322194699744130386305877038340045141942666350930439651591263046894554305691}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{7} + \frac{249615408863916472541302972050325706300493949028106162871742048787012899758830437102143}{1073446311430272990576859475028240101524751297451530564981437714850655571693063851419237} a^{5} - \frac{965680024531821710028513457279889900526403898551694929258753428743575653334277}{39009503402183056664904742278493528496650131556055919239836560897376673988163843} a^{3} - \frac{505316206377483710267712388633530413803734156701818229132296855961072454}{1417622231760566286599212607429806128394242074889561215798122242506200277} a$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1022 are not computed |
| Character table for t20n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.8.85992371875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 27517559 | Data not computed | ||||||