Normalized defining polynomial
\( x^{20} + 13 x^{18} + 30 x^{16} - 143 x^{14} - 510 x^{12} + 1753 x^{10} - 3507 x^{8} - 65361 x^{6} - 60193 x^{4} + 308889 x^{2} - 181411 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-150492394277306332649545007104=-\,2^{20}\cdot 37^{3}\cdot 4903^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{75} a^{16} - \frac{7}{75} a^{14} - \frac{7}{75} a^{12} - \frac{14}{75} a^{10} - \frac{16}{75} a^{8} + \frac{1}{75} a^{6} - \frac{4}{15} a^{4} + \frac{4}{25} a^{2} + \frac{7}{75}$, $\frac{1}{75} a^{17} - \frac{7}{75} a^{15} - \frac{7}{75} a^{13} - \frac{14}{75} a^{11} - \frac{16}{75} a^{9} + \frac{1}{75} a^{7} - \frac{4}{15} a^{5} + \frac{4}{25} a^{3} + \frac{7}{75} a$, $\frac{1}{2595544363729695472297575} a^{18} - \frac{1053362400943843433937}{173036290915313031486505} a^{16} - \frac{292080837867296519713871}{2595544363729695472297575} a^{14} - \frac{417828628601124424122226}{865181454576565157432525} a^{12} - \frac{305437561094950763852823}{865181454576565157432525} a^{10} - \frac{89102227952464009712552}{865181454576565157432525} a^{8} + \frac{62558723325462156456632}{2595544363729695472297575} a^{6} + \frac{717738191474989676571847}{2595544363729695472297575} a^{4} - \frac{124160821023107352103619}{2595544363729695472297575} a^{2} + \frac{232379687929489044244039}{2595544363729695472297575}$, $\frac{1}{2595544363729695472297575} a^{19} - \frac{1053362400943843433937}{173036290915313031486505} a^{17} - \frac{292080837867296519713871}{2595544363729695472297575} a^{15} - \frac{417828628601124424122226}{865181454576565157432525} a^{13} - \frac{305437561094950763852823}{865181454576565157432525} a^{11} - \frac{89102227952464009712552}{865181454576565157432525} a^{9} + \frac{62558723325462156456632}{2595544363729695472297575} a^{7} + \frac{717738191474989676571847}{2595544363729695472297575} a^{5} - \frac{124160821023107352103619}{2595544363729695472297575} a^{3} + \frac{232379687929489044244039}{2595544363729695472297575} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2086096.76453 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.3.4903.1, 10.2.889458133.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 4903 | Data not computed | ||||||