Normalized defining polynomial
\( x^{20} - 4 x^{19} + 12 x^{18} - 10 x^{17} + 61 x^{16} - 9 x^{15} + 719 x^{14} - 285 x^{13} - 240 x^{12} - 4485 x^{11} + 1240 x^{10} + 9340 x^{9} - 1878 x^{8} - 10865 x^{7} - 68633 x^{6} - 80518 x^{5} - 84687 x^{4} - 48647 x^{3} - 18875 x^{2} - 187 x - 3449 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1467214799841538367562738193359375=-\,3^{10}\cdot 5^{10}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{33} a^{18} + \frac{2}{11} a^{17} + \frac{2}{33} a^{16} - \frac{14}{33} a^{15} + \frac{4}{11} a^{14} + \frac{2}{33} a^{13} - \frac{2}{33} a^{12} - \frac{16}{33} a^{11} + \frac{4}{33} a^{10} + \frac{8}{33} a^{9} - \frac{16}{33} a^{8} + \frac{7}{33} a^{7} + \frac{5}{33} a^{6} + \frac{14}{33} a^{5} - \frac{5}{33} a^{4} - \frac{5}{33} a^{3} - \frac{2}{11} a^{2} - \frac{4}{11} a + \frac{4}{33}$, $\frac{1}{810561424584273956936902489318255016034276143523717} a^{19} + \frac{942243753156920917907375746341883316413565100944}{73687402234933996085172953574386819639479649411247} a^{18} - \frac{393278708912097062219033984466241472036311019399974}{810561424584273956936902489318255016034276143523717} a^{17} + \frac{31365232480059478768652433791783301909767615725537}{270187141528091318978967496439418338678092047841239} a^{16} - \frac{355481212975099777562503472506207978315325615990501}{810561424584273956936902489318255016034276143523717} a^{15} - \frac{87372875169466039532961777419435448561300249950230}{810561424584273956936902489318255016034276143523717} a^{14} - \frac{37833979200793512323403547453487400945987176939312}{90062380509363772992989165479806112892697349280413} a^{13} + \frac{38821650068508935256506709289320787763010605875994}{90062380509363772992989165479806112892697349280413} a^{12} - \frac{127416089294182914914180202004153144038157201592329}{270187141528091318978967496439418338678092047841239} a^{11} - \frac{43570288322249615470920306211391412695912574029005}{270187141528091318978967496439418338678092047841239} a^{10} + \frac{110851084300026493836247792651093019447241039865021}{810561424584273956936902489318255016034276143523717} a^{9} - \frac{57495594601756071012289534962688916747887952638547}{270187141528091318978967496439418338678092047841239} a^{8} + \frac{48955894538454862606653440409947242885644296704388}{270187141528091318978967496439418338678092047841239} a^{7} - \frac{66934768255212626017811113558504366028721952119569}{810561424584273956936902489318255016034276143523717} a^{6} - \frac{125999633912830795840127292258193464951007458123280}{270187141528091318978967496439418338678092047841239} a^{5} + \frac{300792267798612738403170948946811032095173408085806}{810561424584273956936902489318255016034276143523717} a^{4} - \frac{5037105545077143684483431548384966930199827450487}{810561424584273956936902489318255016034276143523717} a^{3} - \frac{105789257897732322567909787237069446105506821470949}{270187141528091318978967496439418338678092047841239} a^{2} + \frac{130520823760447814302536909709804780409419793623312}{810561424584273956936902489318255016034276143523717} a + \frac{296274753677632211352449267451706968028502770133959}{810561424584273956936902489318255016034276143523717}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 404035970.257 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||