Normalized defining polynomial
\( x^{20} - x^{18} - 385 x^{16} - 5023 x^{14} - 29810 x^{12} - 98407 x^{10} - 191950 x^{8} - 223625 x^{6} - 152045 x^{4} - 55525 x^{2} - 8405 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14469050233908751212050000000000000000=-\,2^{16}\cdot 5^{17}\cdot 11^{4}\cdot 71^{4}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} + \frac{2}{11} a^{14} + \frac{1}{11} a^{12} - \frac{3}{11} a^{10} - \frac{3}{11} a^{8} + \frac{5}{11} a^{6} - \frac{3}{11} a^{4} + \frac{4}{11} a^{2} + \frac{2}{11}$, $\frac{1}{11} a^{17} + \frac{2}{11} a^{15} + \frac{1}{11} a^{13} - \frac{3}{11} a^{11} - \frac{3}{11} a^{9} + \frac{5}{11} a^{7} - \frac{3}{11} a^{5} + \frac{4}{11} a^{3} + \frac{2}{11} a$, $\frac{1}{19196601490} a^{18} - \frac{1}{22} a^{17} + \frac{99387003}{3839320298} a^{16} - \frac{1}{11} a^{15} + \frac{779683216}{1919660149} a^{14} + \frac{5}{11} a^{13} - \frac{641002253}{1745145590} a^{12} + \frac{3}{22} a^{11} - \frac{936705754}{9598300745} a^{10} + \frac{3}{22} a^{9} - \frac{196146782}{1919660149} a^{8} - \frac{5}{22} a^{7} + \frac{478048569}{3839320298} a^{6} - \frac{4}{11} a^{5} + \frac{630172163}{1919660149} a^{4} - \frac{2}{11} a^{3} - \frac{1278274465}{3839320298} a^{2} + \frac{9}{22} a + \frac{1117901003}{3839320298}$, $\frac{1}{787060661090} a^{19} - \frac{3004311281}{78706066109} a^{17} - \frac{1}{22} a^{16} - \frac{22605267690}{78706066109} a^{15} - \frac{1}{11} a^{14} - \frac{258351989743}{787060661090} a^{13} + \frac{5}{11} a^{12} - \frac{6236275483}{787060661090} a^{11} + \frac{3}{22} a^{10} + \frac{40967656919}{157412132218} a^{9} + \frac{3}{22} a^{8} + \frac{31040843948}{78706066109} a^{7} - \frac{5}{22} a^{6} - \frac{27641186395}{78706066109} a^{5} - \frac{4}{11} a^{4} - \frac{21870992427}{157412132218} a^{3} - \frac{2}{11} a^{2} + \frac{14607372501}{78706066109} a + \frac{9}{22}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7503672002.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | $18{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.10.17.32 | $x^{10} - 5 x^{8} + 10$ | $10$ | $1$ | $17$ | $F_{5}\times C_2$ | $[2]_{2}^{4}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.8.4.1 | $x^{8} + 110902 x^{4} - 357911 x^{2} + 3074813401$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |