Normalized defining polynomial
\( x^{20} - 5 x^{19} + 18 x^{18} - 20 x^{17} - 73 x^{16} + 625 x^{15} - 2261 x^{14} + 5613 x^{13} - 12106 x^{12} + 22404 x^{11} - 49524 x^{10} + 92168 x^{9} - 154411 x^{8} + 167166 x^{7} - 227470 x^{6} + 215582 x^{5} - 163122 x^{4} + 52247 x^{3} - 104799 x^{2} - 52719 x - 12143 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14113234290632913459536084681603=-\,13^{12}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{10194419456160577581637546004515799139813242524482583403167} a^{19} - \frac{3772186180899943497165888495030650545454886871594424627123}{10194419456160577581637546004515799139813242524482583403167} a^{18} - \frac{1559352640867694368347000849376777002212966171307252269849}{10194419456160577581637546004515799139813242524482583403167} a^{17} - \frac{203446088833320029988794530747007242616841297317272415616}{10194419456160577581637546004515799139813242524482583403167} a^{16} - \frac{749944954351963597945576284840908744840430135249119287854}{10194419456160577581637546004515799139813242524482583403167} a^{15} + \frac{3593522226359458503236250098584983427251093629799104466190}{10194419456160577581637546004515799139813242524482583403167} a^{14} - \frac{440562935080056230218401119614127144424585414006086627619}{10194419456160577581637546004515799139813242524482583403167} a^{13} + \frac{623003066225939990712689863467983795497849518750394050378}{10194419456160577581637546004515799139813242524482583403167} a^{12} + \frac{2926495960840544332327373191389869488497400124405071984850}{10194419456160577581637546004515799139813242524482583403167} a^{11} - \frac{19488562826021819172459741116356708679999658155730008100}{42654474711968943856224041859898741170766705123358089553} a^{10} - \frac{3825838858943367878164447821144633732221081909744745917679}{10194419456160577581637546004515799139813242524482583403167} a^{9} + \frac{1014064126483744002036441793939834298313785344603830336384}{10194419456160577581637546004515799139813242524482583403167} a^{8} - \frac{239145238202104579697731016706848283640637595628265855824}{10194419456160577581637546004515799139813242524482583403167} a^{7} - \frac{2146419984971169524146140561036448915055306951324669743382}{10194419456160577581637546004515799139813242524482583403167} a^{6} + \frac{3002801937472923021184806351935586778561986993139948811108}{10194419456160577581637546004515799139813242524482583403167} a^{5} + \frac{829786397837991436046952919585133120169042026510300664812}{10194419456160577581637546004515799139813242524482583403167} a^{4} - \frac{826528772009027037868109893491816472538876658592647426662}{10194419456160577581637546004515799139813242524482583403167} a^{3} - \frac{3043721922609410685361798332353615566441904975972287359068}{10194419456160577581637546004515799139813242524482583403167} a^{2} - \frac{2071799092437709896853296138708527560487197380870310532107}{10194419456160577581637546004515799139813242524482583403167} a + \frac{571037381962736252784424690959924919505370760137915537535}{10194419456160577581637546004515799139813242524482583403167}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5951038.00917 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 347 | Data not computed | ||||||