Normalized defining polynomial
\( x^{20} - 5 x^{19} + 5 x^{18} + 3 x^{17} + 42 x^{16} - 153 x^{15} + 131 x^{14} - 151 x^{13} + 700 x^{12} - 963 x^{11} + 273 x^{10} + 105 x^{9} + 106 x^{8} + x^{7} + 71 x^{6} - 651 x^{5} + 834 x^{4} - 453 x^{3} + 123 x^{2} - 21 x + 3 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12962257948142832318230495232=-\,2^{16}\cdot 3^{27}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{209} a^{18} + \frac{29}{209} a^{17} + \frac{75}{209} a^{16} + \frac{24}{209} a^{15} + \frac{83}{209} a^{14} - \frac{87}{209} a^{13} - \frac{62}{209} a^{12} + \frac{103}{209} a^{11} - \frac{34}{209} a^{10} + \frac{91}{209} a^{9} + \frac{26}{209} a^{8} - \frac{21}{209} a^{7} + \frac{29}{209} a^{6} - \frac{50}{209} a^{5} + \frac{2}{19} a^{4} - \frac{83}{209} a^{3} + \frac{14}{209} a^{2} - \frac{25}{209} a + \frac{34}{209}$, $\frac{1}{29314599977024924903} a^{19} - \frac{1601853246826048}{2664963634274993173} a^{18} + \frac{372065296051851661}{1542873683001311837} a^{17} + \frac{2433570591978299471}{29314599977024924903} a^{16} - \frac{1303937665926497005}{29314599977024924903} a^{15} + \frac{463701093170769413}{29314599977024924903} a^{14} + \frac{13974176254950732950}{29314599977024924903} a^{13} - \frac{9855543525034642305}{29314599977024924903} a^{12} + \frac{45988916416932343}{480567212738113523} a^{11} - \frac{11491752303441911887}{29314599977024924903} a^{10} + \frac{8867634478775736922}{29314599977024924903} a^{9} - \frac{11400043620493308973}{29314599977024924903} a^{8} - \frac{195989289477971553}{2664963634274993173} a^{7} + \frac{662783256871257316}{2664963634274993173} a^{6} - \frac{4294927420302061215}{29314599977024924903} a^{5} + \frac{9271694761804858729}{29314599977024924903} a^{4} + \frac{479759338328092874}{1542873683001311837} a^{3} - \frac{8596913230565388324}{29314599977024924903} a^{2} - \frac{778825625687428384}{2664963634274993173} a + \frac{7290451386776511518}{29314599977024924903}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1605879.29863 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| 10.4.5975675659008.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 15 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.6.9.4 | $x^{6} + 6 x^{4} + 6$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 3.12.18.85 | $x^{12} + 36 x^{11} + 111 x^{10} + 90 x^{9} + 36 x^{8} + 90 x^{7} + 30 x^{6} + 108 x^{5} - 36 x^{4} + 54 x^{3} - 81 x^{2} + 54 x - 18$ | $6$ | $2$ | $18$ | $D_6$ | $[2]_{2}^{2}$ | |
| $11$ | 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.2 | $x^{4} - 11 x^{2} + 847$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |