Properties

Label 20.2.12888021157...0000.2
Degree $20$
Signature $[2, 9]$
Discriminant $-\,2^{20}\cdot 5^{15}\cdot 3319^{5}$
Root discriminant $50.76$
Ramified primes $2, 5, 3319$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T771

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-10371875, 0, -20743750, 0, -8078125, 0, 1132500, 0, 759625, 0, 189125, 0, 36350, 0, 3800, 0, 340, 0, 30, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 30*x^18 + 340*x^16 + 3800*x^14 + 36350*x^12 + 189125*x^10 + 759625*x^8 + 1132500*x^6 - 8078125*x^4 - 20743750*x^2 - 10371875)
 
gp: K = bnfinit(x^20 + 30*x^18 + 340*x^16 + 3800*x^14 + 36350*x^12 + 189125*x^10 + 759625*x^8 + 1132500*x^6 - 8078125*x^4 - 20743750*x^2 - 10371875, 1)
 

Normalized defining polynomial

\( x^{20} + 30 x^{18} + 340 x^{16} + 3800 x^{14} + 36350 x^{12} + 189125 x^{10} + 759625 x^{8} + 1132500 x^{6} - 8078125 x^{4} - 20743750 x^{2} - 10371875 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-12888021157371923168000000000000000=-\,2^{20}\cdot 5^{15}\cdot 3319^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 3319$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{875} a^{14} - \frac{1}{875} a^{12} - \frac{3}{175} a^{10} + \frac{3}{175} a^{8} - \frac{2}{35} a^{6} - \frac{1}{35} a^{4} - \frac{3}{7} a^{2} - \frac{2}{7}$, $\frac{1}{875} a^{15} - \frac{1}{875} a^{13} - \frac{3}{175} a^{11} + \frac{3}{175} a^{9} - \frac{2}{35} a^{7} - \frac{1}{35} a^{5} - \frac{3}{7} a^{3} - \frac{2}{7} a$, $\frac{1}{4375} a^{16} + \frac{1}{875} a^{12} - \frac{2}{35} a^{6} + \frac{1}{35} a^{4} - \frac{1}{7} a^{2} + \frac{1}{7}$, $\frac{1}{4375} a^{17} + \frac{1}{875} a^{13} - \frac{2}{35} a^{7} + \frac{1}{35} a^{5} - \frac{1}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{6516758287863785972661875} a^{18} - \frac{464312944770431735831}{6516758287863785972661875} a^{16} - \frac{466517840766213478164}{1303351657572757194532375} a^{14} + \frac{2329852113463795004666}{1303351657572757194532375} a^{12} + \frac{644521219618601563927}{37238618787793062700925} a^{10} - \frac{2018366958672688952982}{260670331514551438906475} a^{8} - \frac{5187305889807015307187}{52134066302910287781295} a^{6} - \frac{2779287900114413510484}{52134066302910287781295} a^{4} + \frac{108641251677542305526}{1489544751511722508037} a^{2} - \frac{4324443835759060768677}{10426813260582057556259}$, $\frac{1}{6516758287863785972661875} a^{19} - \frac{464312944770431735831}{6516758287863785972661875} a^{17} - \frac{466517840766213478164}{1303351657572757194532375} a^{15} + \frac{2329852113463795004666}{1303351657572757194532375} a^{13} + \frac{644521219618601563927}{37238618787793062700925} a^{11} - \frac{2018366958672688952982}{260670331514551438906475} a^{9} - \frac{5187305889807015307187}{52134066302910287781295} a^{7} - \frac{2779287900114413510484}{52134066302910287781295} a^{5} + \frac{108641251677542305526}{1489544751511722508037} a^{3} - \frac{4324443835759060768677}{10426813260582057556259} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 583046398.675 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T771:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n771 are not computed
Character table for t20n771 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.34424253125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ $20$ $20$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ $20$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ $20$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
3319Data not computed