Normalized defining polynomial
\( x^{20} - 5 x^{18} - 245 x^{16} + 25 x^{14} + 24025 x^{12} + 109000 x^{10} - 686500 x^{8} - 7156250 x^{6} - 21549375 x^{4} - 25518750 x^{2} - 10371875 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12888021157371923168000000000000000=-\,2^{20}\cdot 5^{15}\cdot 3319^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3319$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{1875} a^{16} + \frac{1}{375} a^{14} - \frac{1}{375} a^{12} + \frac{1}{75} a^{10} + \frac{1}{15} a^{6} - \frac{1}{15} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{1875} a^{17} + \frac{1}{375} a^{15} - \frac{1}{375} a^{13} + \frac{1}{75} a^{11} + \frac{1}{15} a^{7} - \frac{1}{15} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{912021248598342523125} a^{18} + \frac{8366412832884986}{182404249719668504625} a^{16} + \frac{73579291016189636}{36480849943933700925} a^{14} - \frac{117346546975521503}{60801416573222834875} a^{12} + \frac{259933065451257464}{36480849943933700925} a^{10} - \frac{240696117343231843}{36480849943933700925} a^{8} - \frac{445321446993160334}{7296169988786740185} a^{6} - \frac{6923128468595914}{486411332585782679} a^{4} - \frac{615016621055085812}{1459233997757348037} a^{2} - \frac{335044697714663981}{1459233997757348037}$, $\frac{1}{912021248598342523125} a^{19} + \frac{8366412832884986}{182404249719668504625} a^{17} + \frac{73579291016189636}{36480849943933700925} a^{15} - \frac{117346546975521503}{60801416573222834875} a^{13} + \frac{259933065451257464}{36480849943933700925} a^{11} - \frac{240696117343231843}{36480849943933700925} a^{9} - \frac{445321446993160334}{7296169988786740185} a^{7} - \frac{6923128468595914}{486411332585782679} a^{5} - \frac{615016621055085812}{1459233997757348037} a^{3} - \frac{335044697714663981}{1459233997757348037} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 317982652.694 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.34424253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 3319 | Data not computed | ||||||