Normalized defining polynomial
\( x^{20} - 7 x^{19} + 21 x^{18} - 49 x^{17} + 106 x^{16} - 161 x^{15} + 218 x^{14} - 417 x^{13} + 781 x^{12} - 1214 x^{11} + 1417 x^{10} - 1214 x^{9} + 781 x^{8} - 417 x^{7} + 218 x^{6} - 161 x^{5} + 106 x^{4} - 49 x^{3} + 21 x^{2} - 7 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1177700037774841082528071223=-\,53^{7}\cdot 139^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{12} + \frac{1}{4} a^{11} - \frac{3}{8} a^{10} - \frac{3}{8} a^{9} - \frac{3}{8} a^{8} - \frac{3}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{8} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{242672} a^{18} + \frac{6887}{121336} a^{17} - \frac{5329}{121336} a^{16} - \frac{14493}{242672} a^{15} + \frac{1787}{242672} a^{14} + \frac{9771}{242672} a^{13} + \frac{15145}{121336} a^{12} + \frac{10231}{121336} a^{11} + \frac{33117}{242672} a^{10} - \frac{41663}{242672} a^{9} - \frac{88219}{242672} a^{8} + \frac{10231}{121336} a^{7} - \frac{45523}{121336} a^{6} + \frac{9771}{242672} a^{5} - \frac{119549}{242672} a^{4} + \frac{106843}{242672} a^{3} + \frac{55339}{121336} a^{2} - \frac{53781}{121336} a + \frac{1}{242672}$, $\frac{1}{1213360} a^{19} - \frac{1}{1213360} a^{18} + \frac{5233}{121336} a^{17} + \frac{13231}{1213360} a^{16} + \frac{22571}{606680} a^{15} - \frac{17807}{606680} a^{14} + \frac{148059}{1213360} a^{13} + \frac{10722}{75835} a^{12} - \frac{58407}{1213360} a^{11} - \frac{54329}{303340} a^{10} - \frac{15709}{75835} a^{9} + \frac{208817}{1213360} a^{8} - \frac{212621}{606680} a^{7} - \frac{445819}{1213360} a^{6} + \frac{120891}{303340} a^{5} + \frac{30729}{606680} a^{4} + \frac{275369}{1213360} a^{3} + \frac{28417}{121336} a^{2} + \frac{305661}{1213360} a - \frac{4659}{41840}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 223266.5352 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n285 |
| Character table for t20n285 is not computed |
Intermediate fields
| 10.4.399826899863.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 53 | Data not computed | ||||||
| 139 | Data not computed | ||||||