Normalized defining polynomial
\( x^{20} - 6 x^{19} + 8 x^{18} + 40 x^{17} - 121 x^{16} - 62 x^{15} + 378 x^{14} + 6 x^{13} - 17 x^{12} - 92 x^{11} - 1660 x^{10} - 888 x^{9} + 2431 x^{8} + 2410 x^{7} - 914 x^{6} + 714 x^{5} + 2194 x^{4} - 348 x^{3} - 1052 x^{2} - 208 x - 169 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11734933549642070097920000000000=-\,2^{30}\cdot 5^{10}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{13} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{65} a^{18} - \frac{3}{65} a^{17} - \frac{1}{65} a^{16} + \frac{24}{65} a^{15} - \frac{23}{65} a^{14} + \frac{5}{13} a^{13} + \frac{24}{65} a^{12} + \frac{22}{65} a^{10} - \frac{2}{5} a^{9} + \frac{6}{13} a^{8} + \frac{8}{65} a^{7} + \frac{24}{65} a^{6} + \frac{12}{65} a^{5} - \frac{4}{13} a^{4} - \frac{9}{65} a^{3} + \frac{9}{65} a^{2} - \frac{9}{65} a - \frac{1}{5}$, $\frac{1}{4463548002524436436353806022213475} a^{19} - \frac{24046416712411139374011572682813}{4463548002524436436353806022213475} a^{18} + \frac{179093076976233822240763373868479}{4463548002524436436353806022213475} a^{17} + \frac{110434654440121614261284749329077}{4463548002524436436353806022213475} a^{16} - \frac{152695982142743203576380727346399}{892709600504887287270761204442695} a^{15} - \frac{288943287781762068567818451988382}{4463548002524436436353806022213475} a^{14} - \frac{97316890499310057804426441578568}{4463548002524436436353806022213475} a^{13} + \frac{1728313306089764126189943721641217}{4463548002524436436353806022213475} a^{12} + \frac{1954364193637008766388470461108039}{4463548002524436436353806022213475} a^{11} - \frac{230716349703219916981072247751724}{892709600504887287270761204442695} a^{10} + \frac{178986489373748671165360408675069}{892709600504887287270761204442695} a^{9} - \frac{2210519349551375737783047943340918}{4463548002524436436353806022213475} a^{8} - \frac{163101449101749375792151186119436}{343349846348033572027215847862575} a^{7} - \frac{1808107253053726591736584876020994}{4463548002524436436353806022213475} a^{6} - \frac{1650673383385119570757973129413201}{4463548002524436436353806022213475} a^{5} - \frac{582075736234923198648785635070049}{4463548002524436436353806022213475} a^{4} + \frac{235825513137748917429396440972567}{4463548002524436436353806022213475} a^{3} - \frac{1806031991428437088313786421021802}{4463548002524436436353806022213475} a^{2} + \frac{839436155954965160671811622494267}{4463548002524436436353806022213475} a + \frac{85186584783044157032130986688491}{343349846348033572027215847862575}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42178724.6457 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 120 |
| The 13 conjugacy class representatives for $C_5:S_4$ |
| Character table for $C_5:S_4$ |
Intermediate fields
| 4.2.75200.1, 5.1.2209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | R | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 47 | Data not computed | ||||||