Normalized defining polynomial
\( x^{20} - 8 x^{19} + 34 x^{18} - 88 x^{17} + 134 x^{16} - 16 x^{15} - 474 x^{14} + 1376 x^{13} - 2062 x^{12} + 1604 x^{11} + 412 x^{10} - 2160 x^{9} + 1615 x^{8} + 1392 x^{7} - 3080 x^{6} + 2060 x^{5} + 596 x^{4} - 1504 x^{3} + 56 x^{2} + 600 x - 199 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10929603344110461118702419968=-\,2^{40}\cdot 1583^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{73} a^{16} - \frac{10}{73} a^{15} - \frac{11}{73} a^{14} + \frac{21}{73} a^{13} - \frac{30}{73} a^{12} - \frac{27}{73} a^{11} + \frac{35}{73} a^{10} - \frac{5}{73} a^{9} - \frac{27}{73} a^{8} + \frac{10}{73} a^{7} + \frac{26}{73} a^{6} - \frac{2}{73} a^{5} - \frac{14}{73} a^{4} - \frac{13}{73} a^{3} - \frac{19}{73} a^{2} + \frac{34}{73} a - \frac{25}{73}$, $\frac{1}{73} a^{17} + \frac{35}{73} a^{15} - \frac{16}{73} a^{14} + \frac{34}{73} a^{13} - \frac{35}{73} a^{12} - \frac{16}{73} a^{11} - \frac{20}{73} a^{10} - \frac{4}{73} a^{9} + \frac{32}{73} a^{8} - \frac{20}{73} a^{7} - \frac{34}{73} a^{6} - \frac{34}{73} a^{5} - \frac{7}{73} a^{4} - \frac{3}{73} a^{3} - \frac{10}{73} a^{2} + \frac{23}{73} a - \frac{31}{73}$, $\frac{1}{73} a^{18} - \frac{31}{73} a^{15} - \frac{19}{73} a^{14} + \frac{33}{73} a^{13} + \frac{12}{73} a^{12} - \frac{24}{73} a^{11} + \frac{12}{73} a^{10} - \frac{12}{73} a^{9} - \frac{24}{73} a^{8} - \frac{19}{73} a^{7} + \frac{5}{73} a^{6} - \frac{10}{73} a^{5} - \frac{24}{73} a^{4} + \frac{7}{73} a^{3} + \frac{31}{73} a^{2} + \frac{20}{73} a - \frac{1}{73}$, $\frac{1}{126495109514247652999123547} a^{19} + \frac{38167854397686700387317}{126495109514247652999123547} a^{18} - \frac{776127948876987536678814}{126495109514247652999123547} a^{17} + \frac{464383456011940176546145}{126495109514247652999123547} a^{16} - \frac{6538296897208385328656584}{126495109514247652999123547} a^{15} - \frac{59569206019160137358302172}{126495109514247652999123547} a^{14} - \frac{18386055318096531300919283}{126495109514247652999123547} a^{13} + \frac{39154674898650239916621866}{126495109514247652999123547} a^{12} - \frac{23441717261848473628915110}{126495109514247652999123547} a^{11} - \frac{7919553236700226910965174}{126495109514247652999123547} a^{10} + \frac{37808701142579434578912415}{126495109514247652999123547} a^{9} + \frac{43965066741464530116722004}{126495109514247652999123547} a^{8} + \frac{62572032855663621408068900}{126495109514247652999123547} a^{7} + \frac{19399810940529909484001250}{126495109514247652999123547} a^{6} - \frac{50529761478667278246734676}{126495109514247652999123547} a^{5} + \frac{8463361182268319773703920}{126495109514247652999123547} a^{4} - \frac{54160054537152733370230596}{126495109514247652999123547} a^{3} + \frac{53302810835596149921811169}{126495109514247652999123547} a^{2} - \frac{45414369790384318807904979}{126495109514247652999123547} a - \frac{31921213854377846933921344}{126495109514247652999123547}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 854898.491998 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.2.405248.1, 10.6.82112970752.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1583 | Data not computed | ||||||