Normalized defining polynomial
\( x^{20} + 10 x^{18} - 20 x^{17} + 32 x^{16} - 100 x^{15} + 110 x^{14} + 80 x^{13} - 156 x^{12} + 400 x^{11} - 1430 x^{10} + 3000 x^{9} - 3992 x^{8} + 5360 x^{7} - 7360 x^{6} + 10400 x^{5} - 11104 x^{4} + 9600 x^{3} - 5760 x^{2} + 2560 x - 640 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1083306204463104000000000000000=-\,2^{38}\cdot 3^{17}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{144} a^{15} + \frac{1}{36} a^{14} + \frac{5}{72} a^{13} - \frac{1}{12} a^{12} + \frac{1}{9} a^{11} + \frac{5}{36} a^{10} - \frac{11}{24} a^{9} + \frac{5}{18} a^{8} + \frac{1}{4} a^{7} + \frac{4}{9} a^{6} - \frac{35}{72} a^{5} - \frac{1}{9} a^{4} + \frac{1}{18} a^{3} + \frac{1}{9} a^{2} + \frac{1}{3} a - \frac{4}{9}$, $\frac{1}{288} a^{16} - \frac{1}{48} a^{14} - \frac{1}{18} a^{13} - \frac{1}{36} a^{12} + \frac{7}{72} a^{11} - \frac{1}{144} a^{10} - \frac{4}{9} a^{9} + \frac{5}{72} a^{8} + \frac{17}{36} a^{7} - \frac{19}{144} a^{6} + \frac{5}{12} a^{5} + \frac{1}{4} a^{4} + \frac{7}{36} a^{3} - \frac{1}{18} a^{2} - \frac{7}{18} a - \frac{1}{9}$, $\frac{1}{288} a^{17} + \frac{1}{36} a^{14} - \frac{5}{72} a^{13} + \frac{7}{72} a^{12} - \frac{25}{144} a^{11} - \frac{1}{36} a^{10} - \frac{11}{36} a^{9} + \frac{11}{36} a^{8} + \frac{17}{144} a^{7} + \frac{1}{4} a^{6} - \frac{5}{24} a^{5} - \frac{5}{36} a^{4} - \frac{7}{18} a^{3} + \frac{4}{9} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{576} a^{18} + \frac{5}{144} a^{14} - \frac{13}{144} a^{13} + \frac{23}{288} a^{12} + \frac{1}{72} a^{11} + \frac{5}{72} a^{10} - \frac{31}{72} a^{9} + \frac{73}{288} a^{8} - \frac{3}{8} a^{7} - \frac{71}{144} a^{6} + \frac{29}{72} a^{5} - \frac{2}{9} a^{4} - \frac{7}{18} a^{3} - \frac{5}{18} a^{2} + \frac{1}{6} a - \frac{1}{9}$, $\frac{1}{2423190627152385795523008} a^{19} - \frac{243493376157560682091}{605797656788096448880752} a^{18} + \frac{429017832425803861451}{605797656788096448880752} a^{17} + \frac{881307307106279948687}{605797656788096448880752} a^{16} - \frac{364469885242682033951}{201932552262698816293584} a^{15} + \frac{10246195197020688320555}{605797656788096448880752} a^{14} - \frac{13367434520985113554633}{134621701508465877529056} a^{13} - \frac{12959582581446628261807}{151449414197024112220188} a^{12} - \frac{10095964644563442005815}{75724707098512056110094} a^{11} + \frac{11457179265895706537677}{50483138065674704073396} a^{10} + \frac{93563341850529257042657}{1211595313576192897761504} a^{9} + \frac{14598018058139453249135}{151449414197024112220188} a^{8} + \frac{225645401316475765297127}{605797656788096448880752} a^{7} + \frac{14261806946614504967393}{50483138065674704073396} a^{6} - \frac{1027116259201096168379}{75724707098512056110094} a^{5} - \frac{16338992487823623053713}{50483138065674704073396} a^{4} + \frac{11233951268511764645825}{37862353549256028055047} a^{3} - \frac{13237696706957387711570}{37862353549256028055047} a^{2} - \frac{11332183135199818409476}{37862353549256028055047} a + \frac{14466731455622611379573}{37862353549256028055047}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25639309.554053202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), 4.2.24000.2, 5.1.162000.1, 10.2.268738560000000.13 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.17 | $x^{10} - 2 x^{4} + 4 x^{2} - 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| 2.10.19.17 | $x^{10} - 2 x^{4} + 4 x^{2} - 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||