Normalized defining polynomial
\( x^{20} - 10 x^{18} - 10 x^{17} + 30 x^{16} + 28 x^{15} - 35 x^{14} - 50 x^{13} - 25 x^{12} - 70 x^{11} + 63 x^{10} - 65 x^{9} + 100 x^{8} - 195 x^{7} - 5 x^{6} - 187 x^{5} + 125 x^{4} - 85 x^{3} + 165 x^{2} - 50 x + 31 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-106589011856324768066406250000=-\,2^{4}\cdot 5^{20}\cdot 7^{8}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{2}{7} a^{15} + \frac{3}{7} a^{14} - \frac{3}{7} a^{13} - \frac{1}{7} a^{12} + \frac{3}{7} a^{11} + \frac{1}{7} a^{10} + \frac{1}{7} a^{9} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} - \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{17} - \frac{1}{7} a^{15} - \frac{2}{7} a^{14} - \frac{2}{7} a^{13} - \frac{2}{7} a^{12} + \frac{2}{7} a^{11} - \frac{1}{7} a^{10} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{4} + \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{14} a^{18} - \frac{1}{14} a^{16} - \frac{1}{7} a^{15} + \frac{5}{14} a^{14} - \frac{1}{7} a^{13} + \frac{1}{7} a^{12} + \frac{3}{7} a^{11} - \frac{1}{2} a^{10} - \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{5}{14} a^{7} - \frac{1}{7} a^{5} - \frac{1}{2} a^{4} - \frac{5}{14} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a - \frac{1}{2}$, $\frac{1}{136231283536125753447458} a^{19} + \frac{988198914630823299779}{68115641768062876723729} a^{18} - \frac{5950670456701666936623}{136231283536125753447458} a^{17} - \frac{422411294818054899800}{9730805966866125246247} a^{16} - \frac{10846776769365007686013}{136231283536125753447458} a^{15} - \frac{32049453681259752081138}{68115641768062876723729} a^{14} + \frac{18869269655368571481661}{68115641768062876723729} a^{13} - \frac{17609948007449911992806}{68115641768062876723729} a^{12} - \frac{7754735886021914473585}{19461611933732250492494} a^{11} - \frac{20562791160100341432388}{68115641768062876723729} a^{10} + \frac{20641488991875052856083}{68115641768062876723729} a^{9} - \frac{20963378056017093846313}{136231283536125753447458} a^{8} - \frac{12181506497678029787294}{68115641768062876723729} a^{7} - \frac{22029389879675875138810}{68115641768062876723729} a^{6} + \frac{9726225904407016092129}{136231283536125753447458} a^{5} - \frac{4049631486824914718513}{136231283536125753447458} a^{4} - \frac{873787115894164207940}{68115641768062876723729} a^{3} + \frac{18097308007442665832538}{68115641768062876723729} a^{2} - \frac{5608096005971878846839}{136231283536125753447458} a - \frac{20141830995724900959989}{68115641768062876723729}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3262043.43252 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.2.1665712890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $59$ | 59.4.0.1 | $x^{4} - x + 14$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 59.6.4.1 | $x^{6} + 295 x^{3} + 27848$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 59.10.0.1 | $x^{10} + x^{2} - x + 37$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |