Normalized defining polynomial
\( x^{20} - 5 x^{19} - 30 x^{18} - 150 x^{17} + 1365 x^{16} + 6495 x^{15} + 13290 x^{14} - 163440 x^{13} - 1387860 x^{12} - 1430930 x^{11} + 8552986 x^{10} - 18873780 x^{9} - 7336320 x^{8} + 141614280 x^{7} - 1202920740 x^{6} - 4356308556 x^{5} - 2480977080 x^{4} - 24898685040 x^{3} + 20689622640 x^{2} + 83497187880 x + 48728820456 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1024293792965275270740179588611492286838179568000000000000=-\,2^{16}\cdot 3^{18}\cdot 5^{12}\cdot 7^{17}\cdot 19^{10}\cdot 41^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $708.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 19, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{18} a^{6} + \frac{7}{18} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{36} a^{11} - \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{1}{18} a^{8} + \frac{5}{36} a^{7} - \frac{5}{36} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{12} - \frac{1}{36} a^{10} - \frac{1}{6} a^{9} - \frac{1}{36} a^{8} - \frac{1}{9} a^{7} - \frac{1}{36} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} + \frac{1}{9} a^{7} - \frac{1}{12} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{36} a^{14} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{7}{18} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{1008} a^{15} + \frac{1}{1008} a^{14} + \frac{1}{84} a^{13} + \frac{5}{504} a^{12} + \frac{13}{1008} a^{11} - \frac{1}{48} a^{10} - \frac{29}{504} a^{9} + \frac{23}{252} a^{8} + \frac{5}{84} a^{7} - \frac{37}{252} a^{6} + \frac{17}{36} a^{5} - \frac{19}{42} a^{4} + \frac{3}{14} a^{3} - \frac{1}{7} a^{2} + \frac{5}{28} a - \frac{11}{28}$, $\frac{1}{15120} a^{16} + \frac{1}{3024} a^{15} + \frac{23}{1890} a^{14} + \frac{43}{7560} a^{13} + \frac{5}{3024} a^{12} + \frac{143}{15120} a^{11} + \frac{41}{7560} a^{10} + \frac{8}{135} a^{9} + \frac{46}{945} a^{8} - \frac{151}{1260} a^{7} + \frac{37}{1260} a^{6} - \frac{187}{630} a^{5} - \frac{1}{35} a^{4} + \frac{29}{70} a^{3} + \frac{3}{28} a^{2} - \frac{53}{140} a + \frac{8}{35}$, $\frac{1}{30240} a^{17} - \frac{1}{30240} a^{16} + \frac{1}{7560} a^{15} - \frac{41}{3780} a^{14} + \frac{229}{30240} a^{13} + \frac{173}{30240} a^{12} - \frac{103}{15120} a^{11} - \frac{323}{15120} a^{10} - \frac{7}{216} a^{9} + \frac{97}{840} a^{8} - \frac{157}{2520} a^{7} - \frac{73}{1260} a^{6} - \frac{4}{315} a^{5} + \frac{163}{420} a^{4} + \frac{341}{840} a^{3} - \frac{83}{280} a^{2} - \frac{1}{7} a - \frac{31}{140}$, $\frac{1}{30240} a^{18} - \frac{1}{30240} a^{16} - \frac{1}{2160} a^{15} + \frac{67}{6048} a^{14} - \frac{13}{2160} a^{13} - \frac{193}{30240} a^{12} + \frac{173}{15120} a^{11} - \frac{121}{7560} a^{10} - \frac{223}{7560} a^{9} + \frac{29}{1890} a^{8} - \frac{359}{2520} a^{7} - \frac{29}{180} a^{6} + \frac{104}{315} a^{5} + \frac{1}{24} a^{4} - \frac{1}{35} a^{3} + \frac{11}{40} a^{2} - \frac{1}{7} a$, $\frac{1}{94413107322607164606201815182937523597201213549934205666162224277366509313687520} a^{19} - \frac{294602226422354402706542375196523538611525078269672738634386522349444480669}{94413107322607164606201815182937523597201213549934205666162224277366509313687520} a^{18} - \frac{422210861596439588984503662599940671618324837225678107043005972447075927673}{94413107322607164606201815182937523597201213549934205666162224277366509313687520} a^{17} - \frac{2005400795008919901759000220670264865965368252646503837803478545260770760381}{94413107322607164606201815182937523597201213549934205666162224277366509313687520} a^{16} - \frac{7411927961321720837632576490769782771513389248709928364195795166706502020107}{94413107322607164606201815182937523597201213549934205666162224277366509313687520} a^{15} + \frac{815177177813341688601230492935448383802925021969919588182845540820395795672107}{94413107322607164606201815182937523597201213549934205666162224277366509313687520} a^{14} + \frac{1181612699808855143388401144874752740026596047885527760998659814388652182787669}{94413107322607164606201815182937523597201213549934205666162224277366509313687520} a^{13} - \frac{121589851087098264188890056003378020706638375633266324043045236832912916385019}{13487586760372452086600259311848217656743030507133457952308889182480929901955360} a^{12} + \frac{73890947169807957808973345804204420315266163252150314802953582412611047992177}{9441310732260716460620181518293752359720121354993420566616222427736650931368752} a^{11} + \frac{127498906085052365433475215854410998429488498007690650896850534895102568300843}{4720655366130358230310090759146876179860060677496710283308111213868325465684376} a^{10} + \frac{2550740530227479591568129230079488881748268399608760311087564623290693943064011}{23603276830651791151550453795734380899300303387483551416540556069341627328421880} a^{9} - \frac{2473799987494964690133398949688668423883917245814133231985193043967807560480309}{23603276830651791151550453795734380899300303387483551416540556069341627328421880} a^{8} + \frac{1250855559826998065039915599369404960701008860718349340129298515074016363461}{53522169684017667010318489332731022447392978202910547429797179295559245642680} a^{7} - \frac{132228249749678045941857521005433775709810555664847394205701751320978230687479}{3933879471775298525258408965955730149883383897913925236090092678223604554736980} a^{6} + \frac{228976837162134081691650433064591068226129544861664008845093321756428865199417}{874195438172288561168535325767940033307418643980872274686687261827467678830440} a^{5} - \frac{47896612775444510411893597916969666418283897670795434829970281869942000769455}{524517262903373136701121195460764019984451186388523364812012357096480607298264} a^{4} - \frac{1263063618385179090936741182171574284424514987493067263816185920608856675455897}{2622586314516865683505605977303820099922255931942616824060061785482403036491320} a^{3} - \frac{46972496268601252020412675202673137319392725909331909255874569479685359560431}{124885062596041223024076475109705719043916949140124610669526751689638239832920} a^{2} + \frac{29998390687300097278267219731112549379149264989059287150091557680129024674733}{109274429771536070146066915720992504163427330497609034335835907728433459853805} a + \frac{52521026532367993485037208323657943461897233003751873864663706506893645287}{5330459988855418055905703205902073373825723438907757772479800376996754139210}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{57}) \), 4.2.932463.3, 5.1.388962000.3, 10.2.1123837730890952868000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| 5 | Data not computed | ||||||
| $7$ | 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.10.9.2 | $x^{10} + 14$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |