Normalized defining polynomial
\( x^{20} - 8 x^{19} + 3 x^{18} + 121 x^{17} - 246 x^{16} - 638 x^{15} + 2315 x^{14} + 1292 x^{13} - 10548 x^{12} - 804 x^{11} + 27547 x^{10} + 2633 x^{9} - 40347 x^{8} - 11191 x^{7} + 28572 x^{6} + 12631 x^{5} - 7548 x^{4} - 4002 x^{3} + 635 x^{2} + 320 x - 29 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-163023866649059818618082021484375=-\,3^{8}\cdot 5^{10}\cdot 239^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{165} a^{18} + \frac{7}{55} a^{17} - \frac{10}{33} a^{16} - \frac{17}{55} a^{15} + \frac{5}{33} a^{14} + \frac{8}{55} a^{13} - \frac{3}{55} a^{12} - \frac{7}{165} a^{11} - \frac{8}{165} a^{10} - \frac{32}{165} a^{9} + \frac{14}{33} a^{8} - \frac{58}{165} a^{7} + \frac{71}{165} a^{6} + \frac{59}{165} a^{5} - \frac{18}{55} a^{4} + \frac{19}{55} a^{3} - \frac{4}{55} a^{2} - \frac{3}{55} a + \frac{68}{165}$, $\frac{1}{4987306021309116965782317105} a^{19} + \frac{458841559213990910590117}{997461204261823393156463421} a^{18} + \frac{81665632484991517232100368}{216839392230831172425318135} a^{17} - \frac{202146435816235371451012681}{4987306021309116965782317105} a^{16} + \frac{54944558255337636425585776}{4987306021309116965782317105} a^{15} - \frac{816787254278893601965282441}{4987306021309116965782317105} a^{14} + \frac{515394342224096220502613019}{1662435340436372321927439035} a^{13} - \frac{1511630963991164167596108868}{4987306021309116965782317105} a^{12} + \frac{2096909619410861179854428834}{4987306021309116965782317105} a^{11} - \frac{429272233940810514443066428}{1662435340436372321927439035} a^{10} + \frac{307396989420622163120697899}{1662435340436372321927439035} a^{9} + \frac{2450843765975878345397372662}{4987306021309116965782317105} a^{8} + \frac{559830927158422282624515213}{1662435340436372321927439035} a^{7} - \frac{735318596393396834551808544}{1662435340436372321927439035} a^{6} + \frac{61097640058072580362953149}{216839392230831172425318135} a^{5} + \frac{369317469949110568641926312}{1662435340436372321927439035} a^{4} + \frac{48234816486932346573806227}{151130485494215665629767185} a^{3} - \frac{319715357418901544416682679}{1662435340436372321927439035} a^{2} + \frac{2482014039077821770376218092}{4987306021309116965782317105} a + \frac{2044700975336784417615423847}{4987306021309116965782317105}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3731575983.23 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 152 conjugacy class representatives for t20n525 are not computed |
| Character table for t20n525 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||