Properties

Label 20.18.1549445940...0000.1
Degree $20$
Signature $[18, 1]$
Discriminant $-\,2^{4}\cdot 5^{15}\cdot 19^{4}\cdot 29^{7}\cdot 109^{4}$
Root discriminant $57.48$
Ramified primes $2, 5, 19, 29, 109$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T955

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-295, 12130, 23965, -249175, 19456, 701537, -254704, -639806, 317729, 283398, -174991, -70067, 52575, 10182, -9157, -876, 915, 43, -48, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 48*x^18 + 43*x^17 + 915*x^16 - 876*x^15 - 9157*x^14 + 10182*x^13 + 52575*x^12 - 70067*x^11 - 174991*x^10 + 283398*x^9 + 317729*x^8 - 639806*x^7 - 254704*x^6 + 701537*x^5 + 19456*x^4 - 249175*x^3 + 23965*x^2 + 12130*x - 295)
 
gp: K = bnfinit(x^20 - x^19 - 48*x^18 + 43*x^17 + 915*x^16 - 876*x^15 - 9157*x^14 + 10182*x^13 + 52575*x^12 - 70067*x^11 - 174991*x^10 + 283398*x^9 + 317729*x^8 - 639806*x^7 - 254704*x^6 + 701537*x^5 + 19456*x^4 - 249175*x^3 + 23965*x^2 + 12130*x - 295, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 48 x^{18} + 43 x^{17} + 915 x^{16} - 876 x^{15} - 9157 x^{14} + 10182 x^{13} + 52575 x^{12} - 70067 x^{11} - 174991 x^{10} + 283398 x^{9} + 317729 x^{8} - 639806 x^{7} - 254704 x^{6} + 701537 x^{5} + 19456 x^{4} - 249175 x^{3} + 23965 x^{2} + 12130 x - 295 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 1]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-154944594075003493045619628906250000=-\,2^{4}\cdot 5^{15}\cdot 19^{4}\cdot 29^{7}\cdot 109^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $57.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19, 29, 109$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{98890861901110095021481121446973485689729} a^{19} - \frac{12143957828644390518819064893167198852744}{98890861901110095021481121446973485689729} a^{18} - \frac{3730685480528367192383247214620831126439}{98890861901110095021481121446973485689729} a^{17} + \frac{21503548655568922257212809486169837258867}{98890861901110095021481121446973485689729} a^{16} + \frac{31006564486736838268324585385599083969451}{98890861901110095021481121446973485689729} a^{15} - \frac{11063735164252083093508199758118539130428}{98890861901110095021481121446973485689729} a^{14} + \frac{363720539244995760902349164673244140840}{32963620633703365007160373815657828563243} a^{13} - \frac{2835411093299976773799804611213900102631}{32963620633703365007160373815657828563243} a^{12} + \frac{14523034995492511370159659779416372702516}{32963620633703365007160373815657828563243} a^{11} + \frac{34843222264393650255280353507020447908261}{98890861901110095021481121446973485689729} a^{10} - \frac{39004886416628794979819929395771202056191}{98890861901110095021481121446973485689729} a^{9} + \frac{23940418182897603457147183615342976003999}{98890861901110095021481121446973485689729} a^{8} - \frac{10291294087865174892211334900709063861747}{32963620633703365007160373815657828563243} a^{7} - \frac{25428593468631001589389489968276048123725}{98890861901110095021481121446973485689729} a^{6} + \frac{22371084403324683757310544424997999592256}{98890861901110095021481121446973485689729} a^{5} + \frac{47260913167882933813216920679365458568160}{98890861901110095021481121446973485689729} a^{4} + \frac{12559340241129207236268808920991801387919}{32963620633703365007160373815657828563243} a^{3} + \frac{14704216329290643061328551144991447645426}{98890861901110095021481121446973485689729} a^{2} + \frac{18950713670233054326771408770740395092501}{98890861901110095021481121446973485689729} a + \frac{38764597123519931105055671015902344795188}{98890861901110095021481121446973485689729}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $18$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 162589955704 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T955:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 819200
The 275 conjugacy class representatives for t20n955 are not computed
Character table for t20n955 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.8172298511640625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ $20$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.3$x^{4} + 2 x^{2} + 4 x + 4$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
5Data not computed
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
19.10.0.1$x^{10} + x^{2} - 2 x + 14$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.1.1$x^{2} - 29$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
29.8.6.2$x^{8} + 145 x^{4} + 7569$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$109$$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
109.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
109.4.2.1$x^{4} + 1199 x^{2} + 427716$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
109.4.2.1$x^{4} + 1199 x^{2} + 427716$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$