Normalized defining polynomial
\( x^{20} - 6 x^{19} - 37 x^{18} + 252 x^{17} + 338 x^{16} - 3357 x^{15} + 897 x^{14} + 12338 x^{13} - 11561 x^{12} + 30017 x^{11} - 72928 x^{10} - 65045 x^{9} + 243819 x^{8} - 72772 x^{7} - 156917 x^{6} + 98528 x^{5} + 12244 x^{4} - 18975 x^{3} + 3271 x^{2} - 113 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 1]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10685760975970208109485168457031250000=-\,2^{4}\cdot 5^{19}\cdot 11^{6}\cdot 71^{4}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{142} a^{18} + \frac{43}{142} a^{17} - \frac{39}{142} a^{16} - \frac{23}{71} a^{15} - \frac{37}{142} a^{14} - \frac{15}{71} a^{13} + \frac{35}{71} a^{12} - \frac{28}{71} a^{11} - \frac{55}{142} a^{10} + \frac{9}{71} a^{9} - \frac{1}{2} a^{8} + \frac{7}{71} a^{7} + \frac{26}{71} a^{6} - \frac{33}{71} a^{5} - \frac{19}{142} a^{4} - \frac{65}{142} a^{3} - \frac{1}{71} a^{2} + \frac{5}{71} a + \frac{27}{142}$, $\frac{1}{117662049982255171692579371841039538199258} a^{19} - \frac{364741289889822022322369647846587126403}{117662049982255171692579371841039538199258} a^{18} - \frac{55845466487239176953927556268139274248541}{117662049982255171692579371841039538199258} a^{17} - \frac{26544967927110150778890020378814968424840}{58831024991127585846289685920519769099629} a^{16} - \frac{12067476493742428190331822859602516522713}{117662049982255171692579371841039538199258} a^{15} + \frac{7080452427182668049714857271633226502838}{58831024991127585846289685920519769099629} a^{14} - \frac{3640551652120382882463429496212066569241}{58831024991127585846289685920519769099629} a^{13} - \frac{17746067401987569383125676918215815062776}{58831024991127585846289685920519769099629} a^{12} + \frac{33107211739014886401499205645258975847655}{117662049982255171692579371841039538199258} a^{11} + \frac{25090230915208897924004383101509347374958}{58831024991127585846289685920519769099629} a^{10} - \frac{34533052212796489308776543883911480213687}{117662049982255171692579371841039538199258} a^{9} + \frac{17670307381530869849948696288881187799985}{58831024991127585846289685920519769099629} a^{8} - \frac{20375456433041225948775922288267854971621}{58831024991127585846289685920519769099629} a^{7} - \frac{14239800352182268113056833623175877611973}{58831024991127585846289685920519769099629} a^{6} - \frac{13870469088806024875192322689152134911121}{117662049982255171692579371841039538199258} a^{5} - \frac{53704716707800191105107449529816640423}{117662049982255171692579371841039538199258} a^{4} - \frac{28176227887222541591499544203848961172125}{58831024991127585846289685920519769099629} a^{3} - \frac{7288509034472077091024566295250739106076}{58831024991127585846289685920519769099629} a^{2} + \frac{7261797016349144699994206572968341455485}{117662049982255171692579371841039538199258} a - \frac{1977865610759660001744665869913447226478}{58831024991127585846289685920519769099629}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1432135060220 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1857945600 |
| The 260 conjugacy class representatives for t20n1106 are not computed |
| Character table for t20n1106 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.8.6.3 | $x^{8} - 11 x^{4} + 847$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.8.4.1 | $x^{8} + 3346680 x^{4} - 4657463 x^{2} + 2800066755600$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |