Normalized defining polynomial
\( x^{20} - 26 x^{18} + 239 x^{16} - 976 x^{14} + 1656 x^{12} - 362 x^{10} - 1503 x^{8} + 1068 x^{6} - 29 x^{4} - 78 x^{2} + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(990800443429593879741272073216=2^{10}\cdot 3^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{3} a^{8} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{3} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{6} a^{14} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{156} a^{16} + \frac{1}{13} a^{14} - \frac{1}{12} a^{13} + \frac{1}{156} a^{12} + \frac{1}{12} a^{11} + \frac{4}{39} a^{10} + \frac{1}{6} a^{9} + \frac{23}{156} a^{8} - \frac{1}{12} a^{7} - \frac{3}{13} a^{6} - \frac{1}{4} a^{5} + \frac{14}{39} a^{4} + \frac{1}{12} a^{3} + \frac{35}{156} a^{2} - \frac{15}{52}$, $\frac{1}{156} a^{17} - \frac{1}{156} a^{15} - \frac{1}{13} a^{13} - \frac{1}{12} a^{12} + \frac{29}{156} a^{11} - \frac{1}{6} a^{10} - \frac{55}{156} a^{9} + \frac{5}{12} a^{8} - \frac{23}{156} a^{7} + \frac{5}{12} a^{6} - \frac{4}{13} a^{5} - \frac{1}{2} a^{4} - \frac{14}{39} a^{3} + \frac{1}{3} a^{2} - \frac{1}{26} a + \frac{1}{4}$, $\frac{1}{3349476} a^{18} - \frac{1910}{837369} a^{16} + \frac{110485}{1674738} a^{14} + \frac{64664}{837369} a^{12} - \frac{1}{4} a^{11} + \frac{250787}{1116492} a^{10} + \frac{1}{4} a^{9} + \frac{701435}{1674738} a^{8} - \frac{1}{2} a^{7} + \frac{43577}{558246} a^{6} - \frac{1}{4} a^{5} - \frac{3737}{558246} a^{4} + \frac{1}{4} a^{3} - \frac{103655}{257652} a^{2} + \frac{1}{4} a + \frac{127949}{1116492}$, $\frac{1}{3349476} a^{19} - \frac{1910}{837369} a^{17} - \frac{58153}{3349476} a^{15} - \frac{1}{12} a^{14} - \frac{20467}{3349476} a^{13} - \frac{1}{12} a^{12} - \frac{107209}{558246} a^{11} + \frac{1}{12} a^{10} + \frac{701435}{1674738} a^{9} - \frac{1}{2} a^{8} + \frac{60065}{372164} a^{7} + \frac{1}{12} a^{6} - \frac{48389}{279123} a^{5} + \frac{1}{3} a^{4} - \frac{62563}{128826} a^{3} + \frac{5}{12} a^{2} - \frac{75587}{558246} a + \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 178244273.259 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n347 are not computed |
| Character table for t20n347 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||