Properties

Label 20.16.9908004434...3216.2
Degree $20$
Signature $[16, 2]$
Discriminant $2^{10}\cdot 3^{2}\cdot 401^{10}$
Root discriminant $31.61$
Ramified primes $2, 3, 401$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T347

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 0, -78, 0, -29, 0, 1068, 0, -1503, 0, -362, 0, 1656, 0, -976, 0, 239, 0, -26, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 26*x^18 + 239*x^16 - 976*x^14 + 1656*x^12 - 362*x^10 - 1503*x^8 + 1068*x^6 - 29*x^4 - 78*x^2 + 9)
 
gp: K = bnfinit(x^20 - 26*x^18 + 239*x^16 - 976*x^14 + 1656*x^12 - 362*x^10 - 1503*x^8 + 1068*x^6 - 29*x^4 - 78*x^2 + 9, 1)
 

Normalized defining polynomial

\( x^{20} - 26 x^{18} + 239 x^{16} - 976 x^{14} + 1656 x^{12} - 362 x^{10} - 1503 x^{8} + 1068 x^{6} - 29 x^{4} - 78 x^{2} + 9 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(990800443429593879741272073216=2^{10}\cdot 3^{2}\cdot 401^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 401$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{3} a^{8} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{3} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{3}$, $\frac{1}{6} a^{14} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{156} a^{16} + \frac{1}{13} a^{14} - \frac{1}{12} a^{13} + \frac{1}{156} a^{12} + \frac{1}{12} a^{11} + \frac{4}{39} a^{10} + \frac{1}{6} a^{9} + \frac{23}{156} a^{8} - \frac{1}{12} a^{7} - \frac{3}{13} a^{6} - \frac{1}{4} a^{5} + \frac{14}{39} a^{4} + \frac{1}{12} a^{3} + \frac{35}{156} a^{2} - \frac{15}{52}$, $\frac{1}{156} a^{17} - \frac{1}{156} a^{15} - \frac{1}{13} a^{13} - \frac{1}{12} a^{12} + \frac{29}{156} a^{11} - \frac{1}{6} a^{10} - \frac{55}{156} a^{9} + \frac{5}{12} a^{8} - \frac{23}{156} a^{7} + \frac{5}{12} a^{6} - \frac{4}{13} a^{5} - \frac{1}{2} a^{4} - \frac{14}{39} a^{3} + \frac{1}{3} a^{2} - \frac{1}{26} a + \frac{1}{4}$, $\frac{1}{3349476} a^{18} - \frac{1910}{837369} a^{16} + \frac{110485}{1674738} a^{14} + \frac{64664}{837369} a^{12} - \frac{1}{4} a^{11} + \frac{250787}{1116492} a^{10} + \frac{1}{4} a^{9} + \frac{701435}{1674738} a^{8} - \frac{1}{2} a^{7} + \frac{43577}{558246} a^{6} - \frac{1}{4} a^{5} - \frac{3737}{558246} a^{4} + \frac{1}{4} a^{3} - \frac{103655}{257652} a^{2} + \frac{1}{4} a + \frac{127949}{1116492}$, $\frac{1}{3349476} a^{19} - \frac{1910}{837369} a^{17} - \frac{58153}{3349476} a^{15} - \frac{1}{12} a^{14} - \frac{20467}{3349476} a^{13} - \frac{1}{12} a^{12} - \frac{107209}{558246} a^{11} + \frac{1}{12} a^{10} + \frac{701435}{1674738} a^{9} - \frac{1}{2} a^{8} + \frac{60065}{372164} a^{7} + \frac{1}{12} a^{6} - \frac{48389}{279123} a^{5} + \frac{1}{3} a^{4} - \frac{62563}{128826} a^{3} + \frac{5}{12} a^{2} - \frac{75587}{558246} a + \frac{1}{4}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 178244273.259 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T347:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 104 conjugacy class representatives for t20n347 are not computed
Character table for t20n347 is not computed

Intermediate fields

\(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
2.10.10.5$x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
$3$3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
401Data not computed