Normalized defining polynomial
\( x^{20} - 7 x^{19} - 100 x^{18} + 589 x^{17} + 3668 x^{16} - 14811 x^{15} - 54634 x^{14} + 70129 x^{13} + 58825 x^{12} + 1529886 x^{11} + 6128738 x^{10} - 7613976 x^{9} - 25178445 x^{8} - 133065235 x^{7} - 464904726 x^{6} + 803384665 x^{5} + 3619285090 x^{4} + 396586263 x^{3} - 6317835878 x^{2} - 5216416927 x - 1117748779 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(987929197094179926527639191994079583531264=2^{8}\cdot 11^{10}\cdot 29^{6}\cdot 97^{2}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 97, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2} - \frac{3}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{12} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{1}{16} a^{14} - \frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{8} a^{9} - \frac{3}{8} a^{8} + \frac{3}{8} a^{7} + \frac{5}{16} a^{6} + \frac{5}{16} a^{5} + \frac{1}{16} a^{4} - \frac{1}{8} a^{3} - \frac{5}{16} a^{2} - \frac{5}{16} a + \frac{7}{16}$, $\frac{1}{122913462266604305804427755840537941163933249901343511148619416191994319782781160690368} a^{19} - \frac{10312456355304354546659268408814595275364546378781575091756347874952765983172630924}{1920522847915692278194183685008405330686457029708492361697178377999911246605955635787} a^{18} - \frac{1022418405476743655168606156429249099291901042122673910067030336981455303154942619567}{30728365566651076451106938960134485290983312475335877787154854047998579945695290172592} a^{17} - \frac{5991155938621248519142309123966475596875173678359572728799860646808954566752203443487}{122913462266604305804427755840537941163933249901343511148619416191994319782781160690368} a^{16} - \frac{7071590138186774721730478791814879712759861367313962363447695283242865812011232375533}{122913462266604305804427755840537941163933249901343511148619416191994319782781160690368} a^{15} + \frac{2695645574936561810357320155206828766335651576370119933923829646696682751936808638409}{61456731133302152902213877920268970581966624950671755574309708095997159891390580345184} a^{14} - \frac{1514162486439248217920173325655007371057629540922102880668308150802124779983375481097}{30728365566651076451106938960134485290983312475335877787154854047998579945695290172592} a^{13} + \frac{180235289215190616407439747634080272082677029315207418161837568574022970278895265893}{122913462266604305804427755840537941163933249901343511148619416191994319782781160690368} a^{12} + \frac{3983538838552870648754856023448134284788814954884889193168453250945630386875785508969}{30728365566651076451106938960134485290983312475335877787154854047998579945695290172592} a^{11} - \frac{9416245611069097852485867527601713446155363564522700491046503258465089454432414448459}{61456731133302152902213877920268970581966624950671755574309708095997159891390580345184} a^{10} + \frac{84755979074834367698655933123677178376157995270295388482489142128078907223191913337}{15364182783325538225553469480067242645491656237667938893577427023999289972847645086296} a^{9} + \frac{1547224138058515347877014011251869928881293007136633284752331259309094179342002185785}{3841045695831384556388367370016810661372914059416984723394356755999822493211911271574} a^{8} + \frac{31080199387465854272058063345690934186018257317877389005779536009635033043759178538067}{122913462266604305804427755840537941163933249901343511148619416191994319782781160690368} a^{7} - \frac{19399647962019143981963068346436329679403228236898505789590907967897583610175048239903}{61456731133302152902213877920268970581966624950671755574309708095997159891390580345184} a^{6} + \frac{902165450781812807978706965399873743711341631966397526323538965421185498450253738908}{1920522847915692278194183685008405330686457029708492361697178377999911246605955635787} a^{5} - \frac{43626082198266756340557146704801114960673302251152948750771872726572993034294839366319}{122913462266604305804427755840537941163933249901343511148619416191994319782781160690368} a^{4} - \frac{46767476855701516746560063227539935655371912067925883372067042568146682062316574782767}{122913462266604305804427755840537941163933249901343511148619416191994319782781160690368} a^{3} - \frac{29400235767118877749143642625724667473954111783817782556425376723974890400473419567413}{61456731133302152902213877920268970581966624950671755574309708095997159891390580345184} a^{2} - \frac{11188613271392443332818228139023898487505802417440036270777777350505929731004592469317}{30728365566651076451106938960134485290983312475335877787154854047998579945695290172592} a + \frac{968274345025184677803728988007662527099305571244824871926123651205502620711040555043}{5344063576808882861062076340892953963649271734841022223853018095304100860120920030016}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1275813547210000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 90 conjugacy class representatives for t20n685 are not computed |
| Character table for t20n685 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.1107649855354064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.12.10.1 | $x^{12} + 3146 x^{6} + 14235529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 97 | Data not computed | ||||||
| $113$ | 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |