Normalized defining polynomial
\( x^{20} - 86 x^{18} - 28 x^{17} + 2486 x^{16} + 3304 x^{15} - 17904 x^{14} - 134036 x^{13} - 431938 x^{12} + 2196536 x^{11} + 9178424 x^{10} - 7077232 x^{9} - 57112310 x^{8} - 207011648 x^{7} + 46964488 x^{6} + 2477753184 x^{5} + 468605560 x^{4} - 9649067552 x^{3} - 492654464 x^{2} + 10166002240 x + 2125814384 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9801220092153173931756020237102466727936=2^{52}\cdot 31^{10}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{62} a^{12} + \frac{15}{31} a^{11} - \frac{3}{31} a^{10} + \frac{2}{31} a^{9} + \frac{5}{31} a^{8} + \frac{6}{31} a^{7} - \frac{5}{31} a^{6} - \frac{14}{31} a^{5} + \frac{7}{31} a^{4} - \frac{2}{31} a^{3} - \frac{2}{31} a^{2} + \frac{8}{31} a + \frac{12}{31}$, $\frac{1}{62} a^{13} + \frac{12}{31} a^{11} - \frac{1}{31} a^{10} + \frac{7}{31} a^{9} + \frac{11}{31} a^{8} + \frac{1}{31} a^{7} + \frac{12}{31} a^{6} - \frac{7}{31} a^{5} + \frac{5}{31} a^{4} - \frac{4}{31} a^{3} + \frac{6}{31} a^{2} - \frac{11}{31} a + \frac{12}{31}$, $\frac{1}{1922} a^{14} + \frac{7}{1922} a^{13} + \frac{1}{961} a^{12} - \frac{278}{961} a^{11} + \frac{128}{961} a^{10} - \frac{387}{961} a^{9} - \frac{404}{961} a^{8} + \frac{290}{961} a^{7} - \frac{216}{961} a^{6} - \frac{108}{961} a^{5} + \frac{342}{961} a^{4} - \frac{288}{961} a^{3} - \frac{328}{961} a^{2} - \frac{148}{961} a - \frac{366}{961}$, $\frac{1}{3844} a^{15} - \frac{4}{961} a^{13} - \frac{3}{961} a^{12} + \frac{245}{1922} a^{11} + \frac{428}{961} a^{10} - \frac{103}{961} a^{9} - \frac{239}{961} a^{8} - \frac{789}{1922} a^{7} + \frac{454}{961} a^{6} - \frac{102}{961} a^{5} + \frac{209}{961} a^{4} - \frac{513}{1922} a^{3} - \frac{352}{961} a^{2} - \frac{6}{961} a + \frac{10}{961}$, $\frac{1}{119164} a^{16} + \frac{15}{119164} a^{15} + \frac{3}{29791} a^{14} - \frac{431}{59582} a^{13} - \frac{110}{29791} a^{12} - \frac{29}{59582} a^{11} - \frac{9499}{29791} a^{10} + \frac{4547}{29791} a^{9} + \frac{507}{59582} a^{8} + \frac{28069}{59582} a^{7} - \frac{7786}{29791} a^{6} + \frac{1786}{29791} a^{5} - \frac{3949}{59582} a^{4} + \frac{24891}{59582} a^{3} + \frac{9652}{29791} a^{2} + \frac{12511}{29791} a - \frac{12724}{29791}$, $\frac{1}{119164} a^{17} + \frac{1}{29791} a^{15} + \frac{3}{29791} a^{14} - \frac{451}{59582} a^{13} + \frac{70}{29791} a^{12} - \frac{8119}{29791} a^{11} - \frac{3039}{29791} a^{10} - \frac{6137}{59582} a^{9} - \frac{6601}{29791} a^{8} + \frac{1719}{29791} a^{7} + \frac{13889}{29791} a^{6} - \frac{13819}{59582} a^{5} - \frac{4313}{29791} a^{4} + \frac{13387}{29791} a^{3} - \frac{10563}{29791} a^{2} + \frac{925}{29791} a + \frac{10719}{29791}$, $\frac{1}{7388168} a^{18} - \frac{1}{923521} a^{17} + \frac{3}{923521} a^{16} - \frac{147}{1847042} a^{15} + \frac{303}{3694084} a^{14} - \frac{6187}{1847042} a^{13} - \frac{433}{923521} a^{12} - \frac{263133}{1847042} a^{11} + \frac{1077615}{3694084} a^{10} + \frac{315541}{923521} a^{9} - \frac{93047}{1847042} a^{8} + \frac{68881}{923521} a^{7} - \frac{319447}{3694084} a^{6} - \frac{110186}{923521} a^{5} - \frac{41}{59582} a^{4} + \frac{327157}{923521} a^{3} + \frac{213309}{923521} a^{2} + \frac{342700}{923521} a - \frac{304067}{923521}$, $\frac{1}{296025149188340833527436008200482771318434264854700659064} a^{19} - \frac{1132023960019171501106675052082107000299741470705}{74006287297085208381859002050120692829608566213675164766} a^{18} + \frac{409729514399402583922967497956267763767040064811751}{148012574594170416763718004100241385659217132427350329532} a^{17} - \frac{152983074892691791490115139293643749375477663435105}{49337524864723472254572668033413795219739044142450109844} a^{16} - \frac{6826652090327742133975616294930099610460824730592113}{74006287297085208381859002050120692829608566213675164766} a^{15} - \frac{295083237970042880912584455272510022231573556829543}{1193649795114277554546112936292269239187234938930244593} a^{14} + \frac{405485596629344072436153106014361031396103720144872641}{74006287297085208381859002050120692829608566213675164766} a^{13} - \frac{64996290686718141302167955539811729503773150354596013}{24668762432361736127286334016706897609869522071225054922} a^{12} - \frac{66025851714523886217939805880210518556388703481483409443}{148012574594170416763718004100241385659217132427350329532} a^{11} - \frac{3372643603609631922522908046595158591050063860683944794}{12334381216180868063643167008353448804934761035612527461} a^{10} - \frac{13256980361870876112209777666426875318953939505619345540}{37003143648542604190929501025060346414804283106837582383} a^{9} + \frac{11742064649497687001453387817826938846051934534623337363}{24668762432361736127286334016706897609869522071225054922} a^{8} + \frac{66781681560208626661090903102125895492456568744350258103}{148012574594170416763718004100241385659217132427350329532} a^{7} + \frac{959305811939162506515047259309953322077892445672952048}{12334381216180868063643167008353448804934761035612527461} a^{6} + \frac{12782929203947804200188358755544984962183047940824482271}{37003143648542604190929501025060346414804283106837582383} a^{5} + \frac{26636199883747854638124255322019971686507582814396995035}{74006287297085208381859002050120692829608566213675164766} a^{4} - \frac{14346975562084552241806854573051682985185367303501503693}{74006287297085208381859002050120692829608566213675164766} a^{3} + \frac{7724650542256814431607234900689786942826718667000251439}{37003143648542604190929501025060346414804283106837582383} a^{2} - \frac{16587132132695245045822415300491031381045566067562103868}{37003143648542604190929501025060346414804283106837582383} a + \frac{12925410468972093555672261130788990348588185575567838779}{37003143648542604190929501025060346414804283106837582383}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63261410870600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.7 | $x^{8} + 8 x^{7} + 12 x^{6} + 10 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.12.28.195 | $x^{12} + 2 x^{10} + 2 x^{8} + 4 x^{5} + 2 x^{4} - 2$ | $12$ | $1$ | $28$ | 12T48 | $[2, 8/3, 8/3, 3]_{3}^{2}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 31.10.5.1 | $x^{10} - 1922 x^{6} + 923521 x^{2} - 2862915100$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 227 | Data not computed | ||||||