Normalized defining polynomial
\( x^{20} - 8 x^{19} + 18 x^{18} + 12 x^{17} - 150 x^{16} + 422 x^{15} - 434 x^{14} - 960 x^{13} + 3223 x^{12} - 1716 x^{11} - 4955 x^{10} + 6682 x^{9} + 2165 x^{8} - 6870 x^{7} + 322 x^{6} + 3148 x^{5} - 310 x^{4} - 640 x^{3} + 19 x^{2} + 34 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97738885512935359526308151296=2^{40}\cdot 31^{4}\cdot 557^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 557$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{59} a^{18} - \frac{20}{59} a^{17} - \frac{27}{59} a^{16} + \frac{18}{59} a^{15} + \frac{13}{59} a^{14} - \frac{26}{59} a^{13} + \frac{8}{59} a^{12} - \frac{18}{59} a^{11} - \frac{21}{59} a^{10} + \frac{8}{59} a^{9} - \frac{10}{59} a^{8} - \frac{21}{59} a^{7} + \frac{16}{59} a^{6} - \frac{15}{59} a^{5} + \frac{13}{59} a^{4} + \frac{10}{59} a^{3} - \frac{5}{59} a^{2} - \frac{8}{59} a + \frac{6}{59}$, $\frac{1}{45889855778459286730561} a^{19} - \frac{4977995957556053945}{777794165736598080179} a^{18} + \frac{15444879103364061213102}{45889855778459286730561} a^{17} - \frac{4685337863909508264319}{45889855778459286730561} a^{16} + \frac{19387778027313216436918}{45889855778459286730561} a^{15} - \frac{16729234279180479327077}{45889855778459286730561} a^{14} - \frac{8359635238973961943570}{45889855778459286730561} a^{13} + \frac{6535146189168262356428}{45889855778459286730561} a^{12} - \frac{16882502553693692962322}{45889855778459286730561} a^{11} - \frac{13404664299473830794860}{45889855778459286730561} a^{10} - \frac{20717668008012668297978}{45889855778459286730561} a^{9} + \frac{2379941376871471720725}{45889855778459286730561} a^{8} + \frac{8897634470609267678108}{45889855778459286730561} a^{7} - \frac{12401910362982946903997}{45889855778459286730561} a^{6} + \frac{13659301428674410940960}{45889855778459286730561} a^{5} - \frac{2065286061927186220451}{45889855778459286730561} a^{4} - \frac{16380325142764964792766}{45889855778459286730561} a^{3} + \frac{12369604193644502031652}{45889855778459286730561} a^{2} + \frac{5760289236509640525030}{45889855778459286730561} a - \frac{14170390877348622829011}{45889855778459286730561}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68652763.3501 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 72 conjugacy class representatives for t20n368 are not computed |
| Character table for t20n368 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.138136.1, 10.8.305304871936.1, 10.8.156316094431232.1, 10.10.39079023607808.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.84 | $x^{8} + 4 x^{7} + 10 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ |
| 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $31$ | 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 31.6.0.1 | $x^{6} - 2 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 557 | Data not computed | ||||||