Normalized defining polynomial
\( x^{20} - 4 x^{19} - 63 x^{18} + 238 x^{17} + 1781 x^{16} - 6364 x^{15} - 29556 x^{14} + 101334 x^{13} + 313830 x^{12} - 1048588 x^{11} - 2182234 x^{10} + 7098988 x^{9} + 9888373 x^{8} - 30275176 x^{7} - 28527308 x^{6} + 75872184 x^{5} + 48979284 x^{4} - 98760184 x^{3} - 41887024 x^{2} + 50121528 x + 11181241 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(898336514802612753926973440000000000=2^{20}\cdot 5^{10}\cdot 41^{5}\cdot 27517559^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41, 27517559$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{10313649147140794392780378801030876507445977832587252079936867849} a^{19} - \frac{5155678379496342101233095995422015180430453292909814903921915672}{10313649147140794392780378801030876507445977832587252079936867849} a^{18} - \frac{29149306236434063367897662580314242007160133944812011555160030}{937604467921890399343670800093716046131452530235204734539715259} a^{17} + \frac{4800591709879886643442632000007724580236436517668937957183196672}{10313649147140794392780378801030876507445977832587252079936867849} a^{16} + \frac{2311279308270644257608767342462778992596728244711800262732189926}{10313649147140794392780378801030876507445977832587252079936867849} a^{15} - \frac{199052320592188846790968573751214940530395396996433432915400255}{937604467921890399343670800093716046131452530235204734539715259} a^{14} - \frac{285929977097835776362766574044594655145388929737443103252877833}{10313649147140794392780378801030876507445977832587252079936867849} a^{13} + \frac{2192434332718009165227615573749137805982331660340183623077619217}{10313649147140794392780378801030876507445977832587252079936867849} a^{12} - \frac{3261207852687554816814186083975429290696356938891362113206979657}{10313649147140794392780378801030876507445977832587252079936867849} a^{11} + \frac{5014853044716980757021322633085390653159622088695998892916762503}{10313649147140794392780378801030876507445977832587252079936867849} a^{10} - \frac{519816361525531178951242552218024384662829032867304432349142269}{10313649147140794392780378801030876507445977832587252079936867849} a^{9} + \frac{1597007960525752128199756543515552924534373594408096907011259622}{10313649147140794392780378801030876507445977832587252079936867849} a^{8} - \frac{1122619366239784475151676404781118428832937847335018748847350256}{10313649147140794392780378801030876507445977832587252079936867849} a^{7} + \frac{445530301326341694132278788921616952058956963795377946157007275}{937604467921890399343670800093716046131452530235204734539715259} a^{6} - \frac{4870174270239249727654747165437792320304507284879306719166877169}{10313649147140794392780378801030876507445977832587252079936867849} a^{5} - \frac{4848521209745770477586599967074714272781087574500470694318894669}{10313649147140794392780378801030876507445977832587252079936867849} a^{4} - \frac{3376408629057469108914390900993036373213589563978696206991980939}{10313649147140794392780378801030876507445977832587252079936867849} a^{3} - \frac{2526920408866625595397348520621408669041034888831167615149593873}{10313649147140794392780378801030876507445977832587252079936867849} a^{2} - \frac{44883525497377163431144739926944559843896369701431248514062351}{937604467921890399343670800093716046131452530235204734539715259} a + \frac{683963046496756278689047300465209065412446451452376739319881377}{10313649147140794392780378801030876507445977832587252079936867849}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 115508854851 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.16400.1, 10.8.85992371875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 27517559 | Data not computed | ||||||