Properties

Label 20.16.8532803816...7409.1
Degree $20$
Signature $[16, 2]$
Discriminant $11^{18}\cdot 43^{4}\cdot 67^{2}$
Root discriminant $27.96$
Ramified primes $11, 43, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T341

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -73, -14, 572, 167, -1631, -842, 2387, 1566, -1964, -1266, 821, 421, -33, -24, -118, -5, 44, -4, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^19 - 4*x^18 + 44*x^17 - 5*x^16 - 118*x^15 - 24*x^14 - 33*x^13 + 421*x^12 + 821*x^11 - 1266*x^10 - 1964*x^9 + 1566*x^8 + 2387*x^7 - 842*x^6 - 1631*x^5 + 167*x^4 + 572*x^3 - 14*x^2 - 73*x + 1)
 
gp: K = bnfinit(x^20 - 5*x^19 - 4*x^18 + 44*x^17 - 5*x^16 - 118*x^15 - 24*x^14 - 33*x^13 + 421*x^12 + 821*x^11 - 1266*x^10 - 1964*x^9 + 1566*x^8 + 2387*x^7 - 842*x^6 - 1631*x^5 + 167*x^4 + 572*x^3 - 14*x^2 - 73*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 5 x^{19} - 4 x^{18} + 44 x^{17} - 5 x^{16} - 118 x^{15} - 24 x^{14} - 33 x^{13} + 421 x^{12} + 821 x^{11} - 1266 x^{10} - 1964 x^{9} + 1566 x^{8} + 2387 x^{7} - 842 x^{6} - 1631 x^{5} + 167 x^{4} + 572 x^{3} - 14 x^{2} - 73 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[16, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(85328038161196365058360047409=11^{18}\cdot 43^{4}\cdot 67^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 43, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{66327318149445411} a^{19} + \frac{1944920120468315}{22109106049815137} a^{18} - \frac{2911040705779933}{66327318149445411} a^{17} - \frac{2222855370700796}{22109106049815137} a^{16} - \frac{600518603104859}{66327318149445411} a^{15} + \frac{1410970699535729}{66327318149445411} a^{14} + \frac{9125981683189369}{66327318149445411} a^{13} + \frac{24822525596044567}{66327318149445411} a^{12} + \frac{17569649884476818}{66327318149445411} a^{11} - \frac{19007229324903550}{66327318149445411} a^{10} - \frac{30461704964718197}{66327318149445411} a^{9} + \frac{8193875908523431}{66327318149445411} a^{8} + \frac{7921703820757371}{22109106049815137} a^{7} - \frac{3080746110738607}{22109106049815137} a^{6} + \frac{26311187765413898}{66327318149445411} a^{5} - \frac{962330662075946}{22109106049815137} a^{4} + \frac{4898812856750335}{22109106049815137} a^{3} - \frac{32667159356052283}{66327318149445411} a^{2} + \frac{1449427277823830}{66327318149445411} a - \frac{29012218267667485}{66327318149445411}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 35989039.467 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T341:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 224 conjugacy class representatives for t20n341 are not computed
Character table for t20n341 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.8.4359845280659.1, 10.10.617567936161.1, 10.8.6793247297771.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
$43$43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$67$67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$