Normalized defining polynomial
\( x^{20} - 4 x^{19} - 27 x^{18} + 124 x^{17} + 205 x^{16} - 1270 x^{15} - 352 x^{14} + 5810 x^{13} - 2155 x^{12} - 12082 x^{11} + 12289 x^{10} + 4578 x^{9} - 22931 x^{8} + 19318 x^{7} + 15716 x^{6} - 23726 x^{5} - 3927 x^{4} + 9548 x^{3} + 127 x^{2} - 1274 x + 49 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(82743491474350352141383732535754752=2^{20}\cdot 13^{16}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{7} a^{17} + \frac{1}{7} a^{16} - \frac{3}{7} a^{15} + \frac{2}{7} a^{14} - \frac{3}{7} a^{13} - \frac{1}{7} a^{12} - \frac{1}{7} a^{11} - \frac{3}{7} a^{10} + \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{18} + \frac{3}{7} a^{16} - \frac{2}{7} a^{15} + \frac{2}{7} a^{14} + \frac{2}{7} a^{13} - \frac{2}{7} a^{11} - \frac{2}{7} a^{10} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{65202455381494346364471360471175} a^{19} + \frac{702458565340925108287500906839}{65202455381494346364471360471175} a^{18} + \frac{45054841817451250778218054804}{2608098215259773854578854418847} a^{17} + \frac{6231881252984888222009802802924}{65202455381494346364471360471175} a^{16} + \frac{24566652440589625066631206191887}{65202455381494346364471360471175} a^{15} + \frac{4230009868459857370819945656253}{9314636483070620909210194353025} a^{14} + \frac{21367874273502040899797158602326}{65202455381494346364471360471175} a^{13} - \frac{1095687921460971671482526479371}{9314636483070620909210194353025} a^{12} + \frac{23479543157694799278994372817249}{65202455381494346364471360471175} a^{11} + \frac{341428113392822280009955377714}{2608098215259773854578854418847} a^{10} + \frac{22320948561018786006192558788539}{65202455381494346364471360471175} a^{9} - \frac{6254455877144120592937714358074}{13040491076298869272894272094235} a^{8} - \frac{4962192387329861350188998919}{167615566533404489368820978075} a^{7} - \frac{4888465390937812845794797046689}{13040491076298869272894272094235} a^{6} + \frac{18640261587601406911580712327981}{65202455381494346364471360471175} a^{5} + \frac{31812820637041410982583843720757}{65202455381494346364471360471175} a^{4} + \frac{5983702265347435576028891972874}{65202455381494346364471360471175} a^{3} + \frac{1763980882605163395697223625101}{13040491076298869272894272094235} a^{2} - \frac{29256153032378620341909357475458}{65202455381494346364471360471175} a - \frac{1196278593260273646874442214649}{9314636483070620909210194353025}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69064961785.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 126 conjugacy class representatives for t20n803 are not computed |
| Character table for t20n803 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.10158928.1, 10.10.1341649635419392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.12.11.6 | $x^{12} - 13312$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.5.1 | $x^{6} - 17$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |