Normalized defining polynomial
\( x^{20} - 6 x^{19} - 11 x^{18} + 137 x^{17} - 93 x^{16} - 1182 x^{15} + 2013 x^{14} + 4737 x^{13} - 12393 x^{12} - 8153 x^{11} + 37133 x^{10} + 10 x^{9} - 59873 x^{8} + 20050 x^{7} + 52231 x^{6} - 26050 x^{5} - 21883 x^{4} + 12349 x^{3} + 3080 x^{2} - 1892 x + 83 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81935519873106874346065098078129=3^{4}\cdot 97^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{13} - \frac{1}{3} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{3} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{16} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{16} - \frac{1}{12} a^{15} - \frac{1}{12} a^{13} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} + \frac{5}{12} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} + \frac{5}{12} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} + \frac{1}{12} a + \frac{5}{12}$, $\frac{1}{24} a^{18} + \frac{1}{24} a^{15} + \frac{1}{24} a^{14} - \frac{1}{24} a^{13} + \frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{3}{8} a^{10} - \frac{3}{8} a^{9} + \frac{5}{12} a^{8} + \frac{1}{8} a^{7} - \frac{5}{24} a^{6} + \frac{1}{24} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{45884936828956560819504} a^{19} - \frac{167930893994403905887}{45884936828956560819504} a^{18} - \frac{103871912356780192937}{5735617103619570102438} a^{17} + \frac{2894099912852433781841}{45884936828956560819504} a^{16} + \frac{589447872203190345617}{22942468414478280409752} a^{15} - \frac{696630036766861395401}{11471234207239140204876} a^{14} - \frac{1112331773349805274233}{15294978942985520273168} a^{13} + \frac{15812758220045576100}{955936183936595017073} a^{12} - \frac{2570262519241844120731}{15294978942985520273168} a^{11} - \frac{274305175984887962602}{955936183936595017073} a^{10} + \frac{7539272711534186815033}{45884936828956560819504} a^{9} + \frac{5481105194092345719543}{15294978942985520273168} a^{8} - \frac{9117591716226764792279}{22942468414478280409752} a^{7} + \frac{1665785398196024655223}{11471234207239140204876} a^{6} - \frac{7162354722074384958313}{45884936828956560819504} a^{5} + \frac{8973466600636881787771}{45884936828956560819504} a^{4} + \frac{4248874784833021789081}{22942468414478280409752} a^{3} + \frac{4587310713375365117975}{45884936828956560819504} a^{2} + \frac{7215172672319853113197}{45884936828956560819504} a + \frac{78717880885484222135}{184276854734765304496}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2029941768.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n347 are not computed |
| Character table for t20n347 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||