Normalized defining polynomial
\( x^{20} - 5 x^{19} + 2 x^{18} + 16 x^{17} - 59 x^{16} + 256 x^{15} - 228 x^{14} - 916 x^{13} + 2274 x^{12} - 1126 x^{11} - 5587 x^{10} + 7039 x^{9} + 8294 x^{8} - 7709 x^{7} - 7262 x^{6} + 2056 x^{5} + 2236 x^{4} - 97 x^{3} - 231 x^{2} - 10 x + 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(762378983303206514165048828125=5^{10}\cdot 61^{7}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{61} a^{16} + \frac{22}{61} a^{15} + \frac{10}{61} a^{14} - \frac{26}{61} a^{13} + \frac{15}{61} a^{12} + \frac{8}{61} a^{11} + \frac{7}{61} a^{10} + \frac{30}{61} a^{9} + \frac{13}{61} a^{8} - \frac{24}{61} a^{7} - \frac{3}{61} a^{6} - \frac{16}{61} a^{5} - \frac{13}{61} a^{4} + \frac{11}{61} a^{3} - \frac{11}{61} a^{2} + \frac{23}{61} a + \frac{27}{61}$, $\frac{1}{61} a^{17} + \frac{14}{61} a^{15} - \frac{2}{61} a^{14} - \frac{23}{61} a^{13} - \frac{17}{61} a^{12} + \frac{14}{61} a^{11} - \frac{2}{61} a^{10} + \frac{24}{61} a^{9} - \frac{5}{61} a^{8} - \frac{24}{61} a^{7} - \frac{11}{61} a^{6} - \frac{27}{61} a^{5} - \frac{8}{61} a^{4} - \frac{9}{61} a^{3} + \frac{21}{61} a^{2} + \frac{9}{61} a + \frac{16}{61}$, $\frac{1}{3721} a^{18} - \frac{22}{3721} a^{17} + \frac{14}{3721} a^{16} + \frac{300}{3721} a^{15} + \frac{936}{3721} a^{14} - \frac{1463}{3721} a^{13} - \frac{1625}{3721} a^{12} - \frac{1835}{3721} a^{11} + \frac{312}{3721} a^{10} - \frac{777}{3721} a^{9} - \frac{1134}{3721} a^{8} - \frac{1252}{3721} a^{7} + \frac{1008}{3721} a^{6} + \frac{464}{3721} a^{5} - \frac{504}{3721} a^{4} - \frac{1062}{3721} a^{3} + \frac{1804}{3721} a^{2} + \frac{184}{3721} a - \frac{1511}{3721}$, $\frac{1}{23751746203709170644331} a^{19} + \frac{873924617582815615}{23751746203709170644331} a^{18} + \frac{43439156222450505163}{23751746203709170644331} a^{17} - \frac{115664211895421456601}{23751746203709170644331} a^{16} + \frac{9165257145424587395756}{23751746203709170644331} a^{15} - \frac{4827190293131047998920}{23751746203709170644331} a^{14} + \frac{4959378363765808347473}{23751746203709170644331} a^{13} - \frac{5018836743493056245488}{23751746203709170644331} a^{12} + \frac{5674983345133063689114}{23751746203709170644331} a^{11} - \frac{932018861348994805735}{23751746203709170644331} a^{10} + \frac{2358241502309029010888}{23751746203709170644331} a^{9} + \frac{7572496952537190384584}{23751746203709170644331} a^{8} - \frac{5660462748404023241728}{23751746203709170644331} a^{7} - \frac{2463641576130401547602}{23751746203709170644331} a^{6} + \frac{10523183187558420228681}{23751746203709170644331} a^{5} - \frac{603945250785872190197}{23751746203709170644331} a^{4} - \frac{827867572345501021673}{23751746203709170644331} a^{3} - \frac{5854378927760026722072}{23751746203709170644331} a^{2} - \frac{330786660732280700282}{23751746203709170644331} a + \frac{3123870353311439876380}{23751746203709170644331}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 156148359.668 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.24217.1, 10.10.1832697153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||