Normalized defining polynomial
\( x^{20} - 22 x^{18} + 13 x^{16} + 2312 x^{14} - 11774 x^{12} - 28580 x^{10} + 276498 x^{8} - 570872 x^{6} + 463389 x^{4} - 154710 x^{2} + 17345 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6584630745307392888012800000000000=2^{28}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} + \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{4} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} + \frac{1}{16} a^{2} - \frac{1}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a^{3} + \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{8} - \frac{1}{16} a^{4} + \frac{1}{16}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} + \frac{1}{32} a^{9} - \frac{1}{32} a^{8} + \frac{3}{32} a^{5} - \frac{3}{32} a^{4} - \frac{5}{32} a + \frac{5}{32}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{1}{32} a^{10} + \frac{1}{32} a^{8} - \frac{1}{32} a^{6} + \frac{1}{32} a^{4} + \frac{1}{32} a^{2} - \frac{1}{32}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{12} + \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{64} a^{9} + \frac{1}{64} a^{8} - \frac{5}{64} a^{7} + \frac{5}{64} a^{6} + \frac{5}{64} a^{5} - \frac{5}{64} a^{4} + \frac{3}{64} a^{3} - \frac{3}{64} a^{2} - \frac{3}{64} a + \frac{3}{64}$, $\frac{1}{320} a^{16} - \frac{1}{40} a^{12} - \frac{1}{80} a^{10} + \frac{3}{160} a^{8} - \frac{3}{40} a^{6} - \frac{7}{40} a^{4} - \frac{5}{16} a^{2} - \frac{27}{64}$, $\frac{1}{320} a^{17} + \frac{1}{160} a^{13} - \frac{1}{32} a^{12} - \frac{1}{80} a^{11} + \frac{1}{20} a^{9} - \frac{1}{32} a^{8} - \frac{3}{40} a^{7} - \frac{13}{160} a^{5} - \frac{3}{32} a^{4} + \frac{3}{16} a^{3} - \frac{1}{2} a^{2} - \frac{5}{64} a - \frac{11}{32}$, $\frac{1}{1525084334532726400} a^{18} - \frac{938895807469421}{1525084334532726400} a^{16} + \frac{21183808191029}{190635541816590800} a^{14} - \frac{286982875137241}{95317770908295400} a^{12} - \frac{238048872560839}{30501686690654528} a^{10} - \frac{5243415932391269}{152508433453272640} a^{8} + \frac{94722870057057}{23829442727073850} a^{6} - \frac{30782980321774823}{190635541816590800} a^{4} - \frac{78532180554049487}{305016866906545280} a^{2} - \frac{69863401930208069}{305016866906545280}$, $\frac{1}{1525084334532726400} a^{19} - \frac{938895807469421}{1525084334532726400} a^{17} + \frac{21183808191029}{190635541816590800} a^{15} - \frac{286982875137241}{95317770908295400} a^{13} - \frac{238048872560839}{30501686690654528} a^{11} - \frac{5243415932391269}{152508433453272640} a^{9} + \frac{94722870057057}{23829442727073850} a^{7} + \frac{16875905132372877}{190635541816590800} a^{5} - \frac{1}{4} a^{4} + \frac{73976252899223153}{305016866906545280} a^{3} - \frac{1}{2} a^{2} + \frac{6390814796428251}{305016866906545280} a - \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8454796039.47 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3469 | Data not computed | ||||||