Normalized defining polynomial
\( x^{20} - x^{19} - 39 x^{18} + 24 x^{17} - 111 x^{16} + 1377 x^{15} + 24220 x^{14} - 57435 x^{13} - 444438 x^{12} + 883410 x^{11} + 3747451 x^{10} - 7378247 x^{9} - 17234947 x^{8} + 36901191 x^{7} + 47314304 x^{6} - 107472506 x^{5} - 84282926 x^{4} + 161726188 x^{3} + 98536502 x^{2} - 92415798 x - 56933073 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62037027908584793907002134238860573213=97^{2}\cdot 397^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{19} - \frac{2526709153074025067747910822065603153304590969841184152392686414515869}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{18} - \frac{4305579609825330182305147542637286059927969277660381050897078793995773}{41270539000983738505140423745384215581264932359286567793055076183507861} a^{17} - \frac{13896682157434112539381283419276253622673694386800247104385873746147185}{41270539000983738505140423745384215581264932359286567793055076183507861} a^{16} + \frac{19080835577753701678615305140220578306959261996599208090451902220786180}{41270539000983738505140423745384215581264932359286567793055076183507861} a^{15} - \frac{10246137351238858265746955012145191529181635423696845725625496714044257}{41270539000983738505140423745384215581264932359286567793055076183507861} a^{14} - \frac{31491797784496528227756154318921508484506948310609377511164600596775864}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{13} - \frac{45701224711201215822486800761934183104708428425049815497756335624257101}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{12} - \frac{24899165641419155657062410443399737201505458560205033864108712988708061}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{11} - \frac{21305713349878131082506721364390934257581519624285886116643151666503176}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{10} + \frac{1967725739548631173321146884551011852234470857014099097973667896104487}{41270539000983738505140423745384215581264932359286567793055076183507861} a^{9} - \frac{29391364846382701822319792646682310749893645690359621618091403392079132}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{8} + \frac{59399252195384900933421877128609944310198565572047151593468067715044743}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{7} + \frac{56723917155655379280264851663669795220777478769615318680331489022928975}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{6} + \frac{4530601516261728039686751563859167666954251136765703256971775353238394}{41270539000983738505140423745384215581264932359286567793055076183507861} a^{5} - \frac{11363381438741849292414670278183968196932694288795733499637666936657710}{41270539000983738505140423745384215581264932359286567793055076183507861} a^{4} + \frac{35351934746882832136357241993667099986568501225709179405059360620390757}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{3} - \frac{47673300236566397658620836420741462500637600870523697712704914886131933}{123811617002951215515421271236152646743794797077859703379165228550523583} a^{2} + \frac{15467270440299899252815213232101856599245798203852147054301135483772777}{123811617002951215515421271236152646743794797077859703379165228550523583} a + \frac{20333755154057884132405978255053543307374515437644538657171811642667612}{41270539000983738505140423745384215581264932359286567793055076183507861}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1548163427350 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||