Normalized defining polynomial
\( x^{20} - 3 x^{19} - 39 x^{18} + 9 x^{17} + 1015 x^{16} + 2294 x^{15} - 23485 x^{14} - 33051 x^{13} + 332416 x^{12} - 18458 x^{11} - 2365731 x^{10} + 2808039 x^{9} + 6845411 x^{8} - 17537627 x^{7} + 1944729 x^{6} + 34047722 x^{5} - 36550142 x^{4} - 2338829 x^{3} + 19149302 x^{2} - 4012621 x - 2235791 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62037027908584793907002134238860573213=97^{2}\cdot 397^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 397, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6063937321567750958267994871925132397850372786313749043921052997} a^{19} + \frac{2140250108005327641290319747366183141296466473932640549556299798}{6063937321567750958267994871925132397850372786313749043921052997} a^{18} + \frac{785472111531940833018662589636714694779993487941213445677803866}{6063937321567750958267994871925132397850372786313749043921052997} a^{17} - \frac{1756178353086911803419369903801529005950325093193677377047552964}{6063937321567750958267994871925132397850372786313749043921052997} a^{16} + \frac{524413168549230605657009323577356438289124674802423579969064923}{6063937321567750958267994871925132397850372786313749043921052997} a^{15} - \frac{2872596633710561836902255571987442760803053739810515825214252772}{6063937321567750958267994871925132397850372786313749043921052997} a^{14} - \frac{2975377149269144866390827682986547517734196129242975103560343339}{6063937321567750958267994871925132397850372786313749043921052997} a^{13} + \frac{833886438335966490965395199267146789195537660686508922843098948}{6063937321567750958267994871925132397850372786313749043921052997} a^{12} + \frac{981557834129770807507351409478774538989841487720867526186641383}{6063937321567750958267994871925132397850372786313749043921052997} a^{11} + \frac{946314960409140965098807687752100576686143479740705551284391970}{6063937321567750958267994871925132397850372786313749043921052997} a^{10} - \frac{2415348234345985038881758646250190609812419055174329314103251990}{6063937321567750958267994871925132397850372786313749043921052997} a^{9} - \frac{2023115411755252371766051672534455823446981751867915966300043732}{6063937321567750958267994871925132397850372786313749043921052997} a^{8} + \frac{2727145684162320117098837092024785075553963313025921685815553769}{6063937321567750958267994871925132397850372786313749043921052997} a^{7} - \frac{1362620849580157609944580586981627466384958876867622000722956530}{6063937321567750958267994871925132397850372786313749043921052997} a^{6} + \frac{2844006605434541742485714032666474202889467764596741465828459637}{6063937321567750958267994871925132397850372786313749043921052997} a^{5} + \frac{2084229424362213636593555898950246374097089413715095009803345204}{6063937321567750958267994871925132397850372786313749043921052997} a^{4} - \frac{476670810682342152498518371178329383905863385588358741881596632}{6063937321567750958267994871925132397850372786313749043921052997} a^{3} + \frac{545220618685444518749580465044997574670684790443528058554330121}{6063937321567750958267994871925132397850372786313749043921052997} a^{2} - \frac{122896081998013222864019522743761722951165624592928141889665839}{6063937321567750958267994871925132397850372786313749043921052997} a - \frac{2532339834273590954836945765007288139641900755471142113733971316}{6063937321567750958267994871925132397850372786313749043921052997}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1040133084100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n418 are not computed |
| Character table for t20n418 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.10265213755597.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 397 | Data not computed | ||||||
| 401 | Data not computed | ||||||