Normalized defining polynomial
\( x^{20} - 2 x^{19} - 34 x^{18} - 28 x^{17} + 205 x^{16} + 2482 x^{15} + 6497 x^{14} - 28804 x^{13} - 110775 x^{12} + 13578 x^{11} + 427036 x^{10} + 763576 x^{9} + 907759 x^{8} + 461840 x^{7} - 973705 x^{6} - 2172678 x^{5} - 1924973 x^{4} - 927948 x^{3} - 254057 x^{2} - 37120 x - 2249 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55205220243101566254904697284680320000=2^{10}\cdot 5^{4}\cdot 36497^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{206} a^{17} + \frac{9}{206} a^{16} + \frac{17}{103} a^{15} - \frac{11}{103} a^{14} - \frac{19}{103} a^{13} + \frac{29}{206} a^{12} - \frac{39}{206} a^{11} + \frac{15}{103} a^{10} + \frac{41}{206} a^{9} + \frac{45}{103} a^{8} + \frac{17}{103} a^{7} - \frac{27}{103} a^{6} - \frac{59}{206} a^{5} - \frac{28}{103} a^{4} + \frac{51}{103} a^{3} + \frac{79}{206} a^{2} - \frac{48}{103} a - \frac{19}{103}$, $\frac{1}{206} a^{18} - \frac{47}{206} a^{16} - \frac{19}{206} a^{15} + \frac{57}{206} a^{14} - \frac{41}{206} a^{13} - \frac{47}{103} a^{12} - \frac{31}{206} a^{11} + \frac{40}{103} a^{10} + \frac{15}{103} a^{9} + \frac{24}{103} a^{8} - \frac{51}{206} a^{7} + \frac{15}{206} a^{6} + \frac{63}{206} a^{5} - \frac{6}{103} a^{4} + \frac{44}{103} a^{3} + \frac{17}{206} a^{2} + \frac{1}{103} a + \frac{33}{206}$, $\frac{1}{52190844027290857509545370337378962385866} a^{19} + \frac{77528394274271136016720566213522905879}{52190844027290857509545370337378962385866} a^{18} + \frac{122308107059579285756702242171249243681}{52190844027290857509545370337378962385866} a^{17} + \frac{65363895423898601610483145553896014509}{8698474004548476251590895056229827064311} a^{16} - \frac{70579794489457958894104644846737562521}{506707223565930655432479323663873421222} a^{15} + \frac{727444695507355102508202870994502312135}{52190844027290857509545370337378962385866} a^{14} + \frac{11259639457268101379045382722697519002137}{52190844027290857509545370337378962385866} a^{13} + \frac{6875524339802068691495495705685228075089}{17396948009096952503181790112459654128622} a^{12} - \frac{1575404840201395323687327427339622218149}{17396948009096952503181790112459654128622} a^{11} - \frac{2536174149150505778210040693111637703471}{17396948009096952503181790112459654128622} a^{10} - \frac{22535572465093025064300354950514554507303}{52190844027290857509545370337378962385866} a^{9} + \frac{23400772800191546827754945494789238051771}{52190844027290857509545370337378962385866} a^{8} - \frac{2321911581486394302543028871521110815057}{17396948009096952503181790112459654128622} a^{7} - \frac{10907133362784864580263795370274413876895}{26095422013645428754772685168689481192933} a^{6} + \frac{25529973053480964967369949746592453150287}{52190844027290857509545370337378962385866} a^{5} + \frac{6496320318497918959386965889668274412688}{26095422013645428754772685168689481192933} a^{4} - \frac{6142945005433396970921998850690760772409}{26095422013645428754772685168689481192933} a^{3} + \frac{8747466635462770840489701067150366137275}{52190844027290857509545370337378962385866} a^{2} - \frac{2921308207617125656229095511159767024553}{17396948009096952503181790112459654128622} a + \frac{10130197016109680524887688270639203348823}{26095422013645428754772685168689481192933}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1661151107480 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.1215378393386825.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 36497 | Data not computed | ||||||