Normalized defining polynomial
\( x^{20} - 5 x^{19} - 10 x^{18} + 82 x^{17} - 20 x^{16} - 472 x^{15} + 622 x^{14} + 788 x^{13} - 2794 x^{12} + 2880 x^{11} + 3096 x^{10} - 15189 x^{9} + 10351 x^{8} + 24951 x^{7} - 34682 x^{6} - 11884 x^{5} + 36358 x^{4} - 8367 x^{3} - 11666 x^{2} + 6964 x - 1087 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(541951501229229898847195369041=71^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{15} - \frac{1}{3} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{17} - \frac{1}{2} a^{12} + \frac{1}{6} a^{9} - \frac{1}{2} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{102} a^{18} + \frac{2}{51} a^{17} + \frac{2}{51} a^{16} - \frac{2}{51} a^{15} - \frac{4}{51} a^{14} - \frac{31}{102} a^{13} - \frac{4}{51} a^{12} + \frac{19}{51} a^{11} - \frac{49}{102} a^{10} - \frac{2}{17} a^{9} - \frac{31}{102} a^{8} + \frac{14}{51} a^{7} - \frac{10}{51} a^{6} + \frac{5}{34} a^{5} - \frac{11}{51} a^{4} - \frac{1}{51} a^{3} - \frac{5}{34} a^{2} - \frac{3}{34} a - \frac{5}{51}$, $\frac{1}{431748523683302074452402} a^{19} + \frac{756085576054477048973}{431748523683302074452402} a^{18} - \frac{21449457425116930958599}{431748523683302074452402} a^{17} + \frac{13356332994038480188481}{431748523683302074452402} a^{16} + \frac{1862531298034338119060}{215874261841651037226201} a^{15} - \frac{67976874859471185015677}{215874261841651037226201} a^{14} + \frac{434470485050971306504}{12698485990685355130953} a^{13} - \frac{106334106477188887694053}{431748523683302074452402} a^{12} + \frac{79637345263657550940629}{431748523683302074452402} a^{11} - \frac{40983853189882423995508}{215874261841651037226201} a^{10} - \frac{49085081110332178977971}{143916174561100691484134} a^{9} + \frac{100564439547088565900381}{215874261841651037226201} a^{8} - \frac{94196399781663077806366}{215874261841651037226201} a^{7} + \frac{33004806018454418575069}{215874261841651037226201} a^{6} - \frac{37793435364503685868777}{215874261841651037226201} a^{5} + \frac{162369557966970686106905}{431748523683302074452402} a^{4} - \frac{36561493728979040852785}{431748523683302074452402} a^{3} + \frac{184348141788651546076243}{431748523683302074452402} a^{2} + \frac{1546183548213828414931}{8465657327123570087302} a - \frac{38983164992863555253059}{215874261841651037226201}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102546280.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T81):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.8.736173553742071.1, 10.8.1835844273671.1, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||