Normalized defining polynomial
\( x^{20} - 51 x^{18} - 108 x^{17} + 396 x^{16} + 1606 x^{15} + 5062 x^{14} + 13078 x^{13} - 23179 x^{12} - 174206 x^{11} - 267790 x^{10} - 68436 x^{9} + 381849 x^{8} + 1503534 x^{7} + 3279178 x^{6} + 3448322 x^{5} + 1008374 x^{4} - 1198918 x^{3} - 1251823 x^{2} - 451984 x - 58981 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52508222134942405659086438867129073664=2^{20}\cdot 33769^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 33769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{1539657412114429007799220236331283614798783644472268} a^{19} - \frac{11544689865104220982662686480642769695069886088087}{118435185547263769830709248948560278061444895728636} a^{18} - \frac{53367516807367957863020022331961418133106590496731}{769828706057214503899610118165641807399391822236134} a^{17} + \frac{43420033612947016361808293808243719706021655772009}{769828706057214503899610118165641807399391822236134} a^{16} - \frac{9225606998700952409612258715988671371790565600635}{384914353028607251949805059082820903699695911118067} a^{15} + \frac{50253849172886325023078814401139532630072249045861}{769828706057214503899610118165641807399391822236134} a^{14} + \frac{118941440002038402073046706024354382924098304388793}{384914353028607251949805059082820903699695911118067} a^{13} - \frac{12237467371440236782082395032974804617285469906335}{59217592773631884915354624474280139030722447864318} a^{12} + \frac{42291722943284191325773489697589850641516760970789}{118435185547263769830709248948560278061444895728636} a^{11} + \frac{713857412876957853884846946506875054698332739057491}{1539657412114429007799220236331283614798783644472268} a^{10} - \frac{635751900204899801261298848546489892211919675095527}{1539657412114429007799220236331283614798783644472268} a^{9} + \frac{282008334328014593385958574726990302749865539021177}{1539657412114429007799220236331283614798783644472268} a^{8} + \frac{20491377619093553805997990259876526761769729925021}{59217592773631884915354624474280139030722447864318} a^{7} - \frac{60023872852264842872038182256494493120101635911230}{384914353028607251949805059082820903699695911118067} a^{6} + \frac{54271368625975264516749840031332631443497721644056}{384914353028607251949805059082820903699695911118067} a^{5} + \frac{152612514703330031499081192375648183937843112524355}{769828706057214503899610118165641807399391822236134} a^{4} + \frac{128221508329124650435753112186314073147550560682509}{384914353028607251949805059082820903699695911118067} a^{3} + \frac{363111942813719104624567001751517272030745224796541}{769828706057214503899610118165641807399391822236134} a^{2} - \frac{511826075718398017490243405056668597928516405516507}{1539657412114429007799220236331283614798783644472268} a + \frac{39039325204524819994210792568427767077051989149573}{118435185547263769830709248948560278061444895728636}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1058254131370 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n671 are not computed |
| Character table for t20n671 is not computed |
Intermediate fields
| 5.5.135076.1, 10.10.616133159929744.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.5 | $x^{8} + 2 x^{7} + 8 x^{2} + 16$ | $2$ | $4$ | $8$ | $C_8:C_2$ | $[2, 2]^{4}$ |
| 2.12.12.27 | $x^{12} - 18 x^{10} + 171 x^{8} + 116 x^{6} - 313 x^{4} + 190 x^{2} + 877$ | $6$ | $2$ | $12$ | 12T30 | $[4/3, 4/3]_{3}^{4}$ | |
| 33769 | Data not computed | ||||||