Normalized defining polynomial
\( x^{20} - 2 x^{19} - 18 x^{18} + 41 x^{17} + 81 x^{16} - 270 x^{15} + 221 x^{14} + 269 x^{13} - 2333 x^{12} + 4187 x^{11} + 3172 x^{10} - 18357 x^{9} + 10737 x^{8} + 28511 x^{7} - 34369 x^{6} - 14280 x^{5} + 33336 x^{4} - 4181 x^{3} - 10753 x^{2} + 4077 x - 79 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5165883938831637970733642578125=3^{6}\cdot 5^{17}\cdot 23^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{15} a^{16} - \frac{4}{15} a^{15} - \frac{4}{15} a^{14} + \frac{2}{15} a^{13} - \frac{2}{5} a^{12} - \frac{7}{15} a^{10} - \frac{1}{15} a^{9} + \frac{1}{5} a^{8} + \frac{1}{15} a^{7} - \frac{7}{15} a^{6} + \frac{4}{15} a^{4} - \frac{2}{15} a^{3} + \frac{1}{15} a^{2} - \frac{1}{15} a - \frac{4}{15}$, $\frac{1}{15} a^{17} - \frac{1}{3} a^{15} + \frac{1}{15} a^{14} + \frac{2}{15} a^{13} + \frac{2}{5} a^{12} - \frac{7}{15} a^{11} + \frac{1}{15} a^{10} - \frac{1}{15} a^{9} - \frac{2}{15} a^{8} - \frac{1}{5} a^{7} + \frac{2}{15} a^{6} + \frac{4}{15} a^{5} - \frac{1}{15} a^{4} - \frac{7}{15} a^{3} + \frac{1}{5} a^{2} + \frac{7}{15} a - \frac{1}{15}$, $\frac{1}{15} a^{18} - \frac{4}{15} a^{15} - \frac{1}{5} a^{14} + \frac{1}{15} a^{13} - \frac{7}{15} a^{12} + \frac{1}{15} a^{11} - \frac{2}{5} a^{10} - \frac{7}{15} a^{9} - \frac{1}{5} a^{8} + \frac{7}{15} a^{7} - \frac{1}{15} a^{6} - \frac{1}{15} a^{5} - \frac{2}{15} a^{4} - \frac{7}{15} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{3}$, $\frac{1}{28409030311481365783784519925} a^{19} - \frac{29295287442053398231743491}{5681806062296273156756903985} a^{18} - \frac{15162324368956683766380283}{916420332628431154315629675} a^{17} - \frac{1872071263759643867281654}{5681806062296273156756903985} a^{16} - \frac{12346445587726519214886010994}{28409030311481365783784519925} a^{15} - \frac{11388665490329373635701862768}{28409030311481365783784519925} a^{14} - \frac{243684683904795778303142474}{631311784699585906306322665} a^{13} + \frac{13691916161205716046892660934}{28409030311481365783784519925} a^{12} - \frac{547866579250114281129180556}{1893935354098757718918967995} a^{11} - \frac{6799101974622368239467292528}{28409030311481365783784519925} a^{10} + \frac{4122739526132421026319647347}{9469676770493788594594839975} a^{9} + \frac{186371400287098269307255550}{378787070819751543783793599} a^{8} + \frac{1293592320576630279724953278}{3156558923497929531531613325} a^{7} + \frac{37758496700315418172390459}{5681806062296273156756903985} a^{6} - \frac{10672362131039840752661490749}{28409030311481365783784519925} a^{5} - \frac{4486104775420922143132849808}{28409030311481365783784519925} a^{4} - \frac{599931498591634310390322817}{5681806062296273156756903985} a^{3} + \frac{10589493973990340317063284719}{28409030311481365783784519925} a^{2} - \frac{438759409703370329773694249}{1136361212459254631351380797} a + \frac{1394995754311579993042965172}{28409030311481365783784519925}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 366183486.951 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n802 are not computed |
| Character table for t20n802 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.767625.1, 10.10.2946240703125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 89.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |