Normalized defining polynomial
\( x^{20} - x^{19} - 19 x^{18} + 30 x^{17} + 98 x^{16} - 232 x^{15} - 135 x^{14} + 834 x^{13} - 121 x^{12} - 1724 x^{11} + 117 x^{10} + 1990 x^{9} + 583 x^{8} - 1038 x^{7} - 702 x^{6} + 210 x^{5} + 271 x^{4} - 18 x^{3} - 39 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49163069859207319641806640625=5^{10}\cdot 11^{16}\cdot 331^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} + \frac{11}{43} a^{17} - \frac{1}{43} a^{16} + \frac{11}{43} a^{15} + \frac{19}{43} a^{13} + \frac{7}{43} a^{12} - \frac{1}{43} a^{11} + \frac{15}{43} a^{10} - \frac{11}{43} a^{9} - \frac{5}{43} a^{8} + \frac{2}{43} a^{7} + \frac{16}{43} a^{6} + \frac{1}{43} a^{5} - \frac{20}{43} a^{4} - \frac{15}{43} a^{3} + \frac{6}{43} a^{2} + \frac{1}{43} a + \frac{20}{43}$, $\frac{1}{5634799755403460423} a^{19} + \frac{11830643011209281}{5634799755403460423} a^{18} - \frac{1923584990212288711}{5634799755403460423} a^{17} + \frac{505554031024594108}{5634799755403460423} a^{16} + \frac{255296273924977206}{5634799755403460423} a^{15} + \frac{1834741160715526991}{5634799755403460423} a^{14} - \frac{2731122007654423406}{5634799755403460423} a^{13} - \frac{2513266794476705411}{5634799755403460423} a^{12} - \frac{2118508688688003685}{5634799755403460423} a^{11} + \frac{2556908515572493730}{5634799755403460423} a^{10} - \frac{1565118565800262336}{5634799755403460423} a^{9} - \frac{2355635272533354988}{5634799755403460423} a^{8} + \frac{1358513324787135643}{5634799755403460423} a^{7} - \frac{2520869517211447694}{5634799755403460423} a^{6} + \frac{1268872356396592468}{5634799755403460423} a^{5} + \frac{44962616766237735}{131041854776824661} a^{4} + \frac{2704707846111401286}{5634799755403460423} a^{3} - \frac{2320413048376626545}{5634799755403460423} a^{2} - \frac{1021238027319735204}{5634799755403460423} a + \frac{1035458189793682762}{5634799755403460423}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24362077.3195 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T86):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.8.221727467534375.1, 10.8.70952789611.1, 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 331 | Data not computed | ||||||