Normalized defining polynomial
\( x^{20} - x^{19} - 7 x^{18} + 34 x^{17} - 95 x^{16} - 233 x^{15} + 728 x^{14} + 663 x^{13} - 1076 x^{12} - 1191 x^{11} - 1181 x^{10} + 2409 x^{9} + 3191 x^{8} - 3047 x^{7} - 1811 x^{6} + 1548 x^{5} + 311 x^{4} - 242 x^{3} - 31 x^{2} + 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4759732575183046916538369140625=3^{6}\cdot 5^{10}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{69} a^{17} - \frac{7}{69} a^{16} - \frac{4}{69} a^{15} - \frac{8}{23} a^{14} - \frac{1}{69} a^{13} - \frac{10}{69} a^{12} + \frac{32}{69} a^{11} - \frac{26}{69} a^{10} + \frac{2}{69} a^{9} - \frac{26}{69} a^{8} - \frac{5}{23} a^{7} - \frac{26}{69} a^{6} - \frac{17}{69} a^{5} + \frac{13}{69} a^{4} - \frac{31}{69} a^{2} + \frac{22}{69} a + \frac{7}{69}$, $\frac{1}{207} a^{18} + \frac{16}{207} a^{16} + \frac{17}{207} a^{15} - \frac{100}{207} a^{14} - \frac{86}{207} a^{13} + \frac{31}{207} a^{12} - \frac{26}{69} a^{11} + \frac{3}{23} a^{10} + \frac{19}{69} a^{9} + \frac{79}{207} a^{8} - \frac{62}{207} a^{7} + \frac{8}{207} a^{6} + \frac{101}{207} a^{5} + \frac{91}{207} a^{4} + \frac{38}{207} a^{3} - \frac{19}{69} a^{2} + \frac{1}{9} a + \frac{49}{207}$, $\frac{1}{356181416366940438489} a^{19} + \frac{504211672315034818}{356181416366940438489} a^{18} + \frac{1933631491644684589}{356181416366940438489} a^{17} - \frac{11541044763313440050}{118727138788980146163} a^{16} + \frac{17188522294177136890}{356181416366940438489} a^{15} + \frac{246649466183387066}{1720683170854784727} a^{14} - \frac{17871037367653805347}{356181416366940438489} a^{13} + \frac{172896083910218681539}{356181416366940438489} a^{12} - \frac{22608609549222748885}{118727138788980146163} a^{11} - \frac{13174214258401656098}{39575712929660048721} a^{10} - \frac{64851325691309099399}{356181416366940438489} a^{9} - \frac{149010761721674217745}{356181416366940438489} a^{8} - \frac{55954602133413075607}{118727138788980146163} a^{7} - \frac{109257025177371180998}{356181416366940438489} a^{6} + \frac{8989013226864778}{746711564710566957} a^{5} + \frac{4242805253929393741}{13191904309886682907} a^{4} + \frac{4504850368285539677}{356181416366940438489} a^{3} - \frac{102905451985516872394}{356181416366940438489} a^{2} - \frac{18759142828361159225}{39575712929660048721} a + \frac{119246135693650025923}{356181416366940438489}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 384531814.135 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1, 10.8.2181681135084375.1, 10.8.698137963227.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||