Normalized defining polynomial
\( x^{20} - x^{19} - 37 x^{18} + 29 x^{17} + 506 x^{16} - 316 x^{15} - 3150 x^{14} + 1669 x^{13} + 8233 x^{12} - 4292 x^{11} - 589 x^{10} + 1831 x^{9} - 40673 x^{8} + 21110 x^{7} + 98350 x^{6} - 45691 x^{5} - 121443 x^{4} + 16210 x^{3} + 68874 x^{2} + 17367 x - 2107 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46799436188632660609169542229953405952=2^{10}\cdot 89417^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} - \frac{2}{7} a^{17} + \frac{1}{7} a^{15} + \frac{1}{7} a^{14} - \frac{2}{7} a^{13} + \frac{2}{7} a^{12} + \frac{1}{7} a^{11} - \frac{1}{7} a^{9} - \frac{3}{7} a^{7} - \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a$, $\frac{1}{1794195566789297006227513169090453811977} a^{19} + \frac{6252057083267645258395727433968719463}{256313652398471000889644738441493401711} a^{18} - \frac{91947591923053197321832181882790135619}{1794195566789297006227513169090453811977} a^{17} + \frac{330889533818525898774661459531791298957}{1794195566789297006227513169090453811977} a^{16} - \frac{187714589292946893576309838186029310985}{1794195566789297006227513169090453811977} a^{15} + \frac{9371014579621101783506186117515124821}{23301241127133727353604067131044854701} a^{14} - \frac{772850562320788190421946542831164092479}{1794195566789297006227513169090453811977} a^{13} - \frac{667037207727845360718607355933099705732}{1794195566789297006227513169090453811977} a^{12} + \frac{28141601848469338568747178760857465581}{163108687889936091475228469917313982907} a^{11} + \frac{112788978552691575766136236260127771885}{1794195566789297006227513169090453811977} a^{10} - \frac{723709636930898435641192558551327095223}{1794195566789297006227513169090453811977} a^{9} - \frac{14620293865814957442721744568994822667}{1794195566789297006227513169090453811977} a^{8} - \frac{561309531887512523895931687471343985100}{1794195566789297006227513169090453811977} a^{7} - \frac{579563340731043643023045052500723129104}{1794195566789297006227513169090453811977} a^{6} - \frac{25792451609206438283127252278992022129}{1794195566789297006227513169090453811977} a^{5} + \frac{37644422461552371324832721579714396253}{256313652398471000889644738441493401711} a^{4} - \frac{301966112406738095379058544156663015384}{1794195566789297006227513169090453811977} a^{3} - \frac{571089657943461597760226390699541382569}{1794195566789297006227513169090453811977} a^{2} - \frac{773856143805543157621663608548316130146}{1794195566789297006227513169090453811977} a + \frac{82393689559719550092455625905477187456}{256313652398471000889644738441493401711}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1163941815390 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n966 are not computed |
| Character table for t20n966 is not computed |
Intermediate fields
| 5.5.89417.1, 10.10.714924671874713.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 89417 | Data not computed | ||||||