Normalized defining polynomial
\( x^{20} - 35 x^{18} - 8 x^{17} + 426 x^{16} + 103 x^{15} - 2390 x^{14} - 491 x^{13} + 6529 x^{12} + 1454 x^{11} - 7832 x^{10} - 3568 x^{9} + 2368 x^{8} + 4737 x^{7} + 674 x^{6} - 777 x^{5} - 335 x^{4} - 352 x^{3} + 13 x^{2} + 13 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44145664201696349530694455706624=2^{10}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{4}{13} a^{16} - \frac{2}{13} a^{15} + \frac{5}{13} a^{14} + \frac{2}{13} a^{13} - \frac{5}{13} a^{12} + \frac{5}{13} a^{11} + \frac{5}{13} a^{10} + \frac{2}{13} a^{9} - \frac{2}{13} a^{8} - \frac{2}{13} a^{7} - \frac{3}{13} a^{6} + \frac{3}{13} a^{5} + \frac{4}{13} a^{4} - \frac{4}{13} a^{3} - \frac{6}{13} a^{2} + \frac{4}{13} a + \frac{5}{13}$, $\frac{1}{117} a^{18} - \frac{1}{39} a^{17} - \frac{2}{39} a^{16} - \frac{23}{117} a^{15} + \frac{11}{39} a^{14} - \frac{14}{39} a^{13} + \frac{4}{9} a^{12} - \frac{29}{117} a^{11} + \frac{11}{39} a^{10} - \frac{2}{9} a^{9} - \frac{56}{117} a^{8} - \frac{5}{117} a^{7} + \frac{1}{3} a^{6} + \frac{20}{117} a^{5} + \frac{2}{9} a^{4} - \frac{23}{117} a^{3} + \frac{11}{117} a^{2} - \frac{17}{117} a + \frac{5}{117}$, $\frac{1}{524318412167858465754831} a^{19} - \frac{618893892914054518504}{174772804055952821918277} a^{18} + \frac{1564654608987594295162}{174772804055952821918277} a^{17} - \frac{8236152193635664620722}{40332185551373728134987} a^{16} - \frac{45075213903530139052108}{174772804055952821918277} a^{15} + \frac{67012429934414167006867}{174772804055952821918277} a^{14} + \frac{210662234001718987420717}{524318412167858465754831} a^{13} + \frac{180241601742738251754919}{524318412167858465754831} a^{12} - \frac{61116941300085282619900}{174772804055952821918277} a^{11} + \frac{6795953523832208925593}{22796452702950368076297} a^{10} + \frac{161128813275498929919145}{524318412167858465754831} a^{9} + \frac{112322804402105432335921}{524318412167858465754831} a^{8} + \frac{41141439075859528501222}{174772804055952821918277} a^{7} + \frac{171646615017045451928288}{524318412167858465754831} a^{6} + \frac{213381209083328922265640}{524318412167858465754831} a^{5} - \frac{102581617512053927800823}{524318412167858465754831} a^{4} - \frac{218508063556894995746896}{524318412167858465754831} a^{3} + \frac{107374057731650691123670}{524318412167858465754831} a^{2} - \frac{16431574787924365493941}{524318412167858465754831} a - \frac{23981681827952474184883}{58257601351984273972759}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1174045114.07 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n350 are not computed |
| Character table for t20n350 is not computed |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 401 | Data not computed | ||||||