Normalized defining polynomial
\( x^{20} - 4 x^{19} - 144 x^{18} + 145 x^{17} + 8425 x^{16} + 13298 x^{15} - 207708 x^{14} - 784764 x^{13} + 1226595 x^{12} + 11165685 x^{11} + 12772327 x^{10} - 41538687 x^{9} - 125332665 x^{8} - 71352743 x^{7} + 160719269 x^{6} + 313068405 x^{5} + 172700638 x^{4} - 205510240 x^{3} - 392468850 x^{2} - 30598427 x + 193923241 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43655819768396836960834231619884599320641=67^{8}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{19} - \frac{6672072353845766508725920169547442248790848814030240592969198828065391742805}{89784374652295031350689361540113062380785595509823584723946641813589259846249} a^{18} + \frac{81429386749632781462215905861276461619070010982172858347977920916296544149925}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{17} + \frac{109570363556768452452677895871601365678519566681960807504356061633431050651142}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{16} + \frac{73969512095236897107572171503114474894700492896108344833089619548557541148449}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{15} - \frac{720802998426453123921241594787126350267131081204060701772871694500625098141}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{14} + \frac{38993299543047894257760472948458050010267046976636054225956257375511819864172}{89784374652295031350689361540113062380785595509823584723946641813589259846249} a^{13} + \frac{44418652076636945176342668239340221498694983300427678991201976453671692514478}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{12} - \frac{40040035363238810215217757716635854916072666824692766406576870070995100960962}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{11} + \frac{86213943210990197377841880161659465299294044418997010180158483372095561083335}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{10} - \frac{127561593725832471957799131098806448053866381818226463299504445506321669461189}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{9} + \frac{40307814851871451043662813096325293744828826788240126293483901594592037178343}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{8} + \frac{44817730301405157238742036037569215904832449972898724238520071262920456124294}{89784374652295031350689361540113062380785595509823584723946641813589259846249} a^{7} - \frac{14446062692562042546614410799238274271201333163689937977785911817377301493345}{89784374652295031350689361540113062380785595509823584723946641813589259846249} a^{6} + \frac{104659710269628456425051009728000161666809236841347165374291564286806560064686}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{5} + \frac{104071116409844534116135507511548462795993565958010741329567683556487384374278}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{4} - \frac{109546828200660393017909731409322486623308839526838298119863367964154217494894}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a^{3} - \frac{39963889454140529003318968637249171955420659788356327291665201221353183371417}{89784374652295031350689361540113062380785595509823584723946641813589259846249} a^{2} - \frac{85885563722778314396361156096022259060107090809449084509672872629857409826910}{269353123956885094052068084620339187142356786529470754171839925440767779538747} a - \frac{12934716373871947171722278110544531649095159869219327130220581797430020638984}{89784374652295031350689361540113062380785595509823584723946641813589259846249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32973030391300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n313 are not computed |
| Character table for t20n313 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.116071900626889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 67.8.6.1 | $x^{8} - 16147 x^{4} + 93083904$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 401 | Data not computed | ||||||