Normalized defining polynomial
\( x^{20} - 60 x^{18} + 804 x^{16} + 9728 x^{14} - 242923 x^{12} + 1170494 x^{10} + 1345164 x^{8} - 21552148 x^{6} + 50119324 x^{4} - 44954694 x^{2} + 13997521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41074094878557744094273699176620423643136=2^{40}\cdot 11^{16}\cdot 241^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5543} a^{16} + \frac{663}{5543} a^{14} - \frac{1124}{5543} a^{12} + \frac{2498}{5543} a^{10} - \frac{2646}{5543} a^{8} + \frac{2608}{5543} a^{6} - \frac{1785}{5543} a^{4} - \frac{10}{23} a^{2} + \frac{3}{23}$, $\frac{1}{5543} a^{17} + \frac{663}{5543} a^{15} - \frac{1124}{5543} a^{13} + \frac{2498}{5543} a^{11} - \frac{2646}{5543} a^{9} + \frac{2608}{5543} a^{7} - \frac{1785}{5543} a^{5} - \frac{10}{23} a^{3} + \frac{3}{23} a$, $\frac{1}{99388898558423683136637946806613} a^{18} + \frac{1077519685947010828696718495}{99388898558423683136637946806613} a^{16} - \frac{677745301915846397766588883598}{4321256459061899266810345513331} a^{14} + \frac{46950058361414977780617092826467}{99388898558423683136637946806613} a^{12} - \frac{17685038827325836953046412283930}{99388898558423683136637946806613} a^{10} + \frac{20902818118245499339102738054559}{99388898558423683136637946806613} a^{8} - \frac{37596327245550277836318222877227}{99388898558423683136637946806613} a^{6} + \frac{176645430745784707691437329301}{412402068707152212185219696293} a^{4} + \frac{160562227529684498687631194980}{412402068707152212185219696293} a^{2} + \frac{443174331855376290169991808}{1711211903349179303673110773}$, $\frac{1}{99388898558423683136637946806613} a^{19} + \frac{1077519685947010828696718495}{99388898558423683136637946806613} a^{17} - \frac{677745301915846397766588883598}{4321256459061899266810345513331} a^{15} + \frac{46950058361414977780617092826467}{99388898558423683136637946806613} a^{13} - \frac{17685038827325836953046412283930}{99388898558423683136637946806613} a^{11} + \frac{20902818118245499339102738054559}{99388898558423683136637946806613} a^{9} - \frac{37596327245550277836318222877227}{99388898558423683136637946806613} a^{7} + \frac{176645430745784707691437329301}{412402068707152212185219696293} a^{5} + \frac{160562227529684498687631194980}{412402068707152212185219696293} a^{3} + \frac{443174331855376290169991808}{1711211903349179303673110773} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26040477644000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 224 conjugacy class representatives for t20n335 are not computed |
| Character table for t20n335 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.52900342088704.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 241 | Data not computed | ||||||