Normalized defining polynomial
\( x^{20} - 4 x^{19} - 53 x^{18} + 163 x^{17} + 926 x^{16} - 2177 x^{15} - 6101 x^{14} + 6905 x^{13} + 14743 x^{12} + 69919 x^{11} - 77732 x^{10} - 498941 x^{9} + 641383 x^{8} + 476564 x^{7} - 996698 x^{6} + 1541404 x^{5} - 2636562 x^{4} + 574525 x^{3} + 2216019 x^{2} - 1608972 x + 302989 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(401784688398260722928486785556640625=5^{10}\cdot 419^{2}\cdot 695771^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 419, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{77197131299197252112828454509367975086318707258697000393} a^{19} + \frac{15502727440482611674148399394343663673076234321400617281}{77197131299197252112828454509367975086318707258697000393} a^{18} - \frac{17170480827188620857339750721585808176802426495667242826}{77197131299197252112828454509367975086318707258697000393} a^{17} - \frac{23879203343794874638137533108963560348593416839306722154}{77197131299197252112828454509367975086318707258697000393} a^{16} + \frac{36792471580590961896636785152903382619630146546332683545}{77197131299197252112828454509367975086318707258697000393} a^{15} + \frac{21579932275558861765525488895292948185217072362887744149}{77197131299197252112828454509367975086318707258697000393} a^{14} - \frac{34320902439956052804508088314116187996023864428725084419}{77197131299197252112828454509367975086318707258697000393} a^{13} - \frac{7152843928125792882190417232317627791296410585518188540}{77197131299197252112828454509367975086318707258697000393} a^{12} + \frac{32187134059906771941981816700556780364460146185357671696}{77197131299197252112828454509367975086318707258697000393} a^{11} + \frac{14658139339050344660809646252631516098111667618453647081}{77197131299197252112828454509367975086318707258697000393} a^{10} - \frac{12222643742100484193333676447321787346210992030169547201}{77197131299197252112828454509367975086318707258697000393} a^{9} + \frac{28160923401095272521418318055067224942684672375504946931}{77197131299197252112828454509367975086318707258697000393} a^{8} - \frac{7904372004295695273364214109734612249210010951649656701}{77197131299197252112828454509367975086318707258697000393} a^{7} + \frac{27662894855488443822407952372203948722357605410383491965}{77197131299197252112828454509367975086318707258697000393} a^{6} + \frac{3714070470617545434654363729205714963094986893258935651}{77197131299197252112828454509367975086318707258697000393} a^{5} - \frac{23127287904674485185698684586729785139848338897083941077}{77197131299197252112828454509367975086318707258697000393} a^{4} - \frac{35237584569078950666224637351909953860170656466029475839}{77197131299197252112828454509367975086318707258697000393} a^{3} + \frac{31042709762614194859965798178113965557496592442887172630}{77197131299197252112828454509367975086318707258697000393} a^{2} + \frac{20507815386389524725625596852233133980836037101764311879}{77197131299197252112828454509367975086318707258697000393} a + \frac{12793350497078756829583531111018493306298790453088249283}{77197131299197252112828454509367975086318707258697000393}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88764287740.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1030 are not computed |
| Character table for t20n1030 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 419 | Data not computed | ||||||
| 695771 | Data not computed | ||||||