Normalized defining polynomial
\( x^{20} - 80 x^{18} + 2341 x^{16} - 29870 x^{14} + 151221 x^{12} - 175704 x^{10} - 874464 x^{8} + 2802780 x^{6} - 2229321 x^{4} - 595654 x^{2} + 978121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3956448137628099441486726576701509206016=2^{40}\cdot 11^{16}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{4}{11} a^{8} + \frac{2}{11} a^{6} - \frac{5}{11} a^{4} - \frac{2}{11} a^{2} + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{4}{11} a^{9} + \frac{2}{11} a^{7} - \frac{5}{11} a^{5} - \frac{2}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{3}{11} a^{8} - \frac{2}{11} a^{6} - \frac{4}{11} a^{4} - \frac{2}{11} a^{2} - \frac{4}{11}$, $\frac{1}{11} a^{13} - \frac{3}{11} a^{9} - \frac{2}{11} a^{7} - \frac{4}{11} a^{5} - \frac{2}{11} a^{3} - \frac{4}{11} a$, $\frac{1}{11} a^{14} - \frac{1}{11} a^{8} + \frac{2}{11} a^{6} + \frac{5}{11} a^{4} + \frac{1}{11} a^{2} + \frac{3}{11}$, $\frac{1}{11} a^{15} - \frac{1}{11} a^{9} + \frac{2}{11} a^{7} + \frac{5}{11} a^{5} + \frac{1}{11} a^{3} + \frac{3}{11} a$, $\frac{1}{2783} a^{16} + \frac{35}{2783} a^{14} + \frac{87}{2783} a^{12} - \frac{39}{2783} a^{10} + \frac{962}{2783} a^{8} - \frac{582}{2783} a^{6} + \frac{502}{2783} a^{4} - \frac{38}{121} a^{2} + \frac{16}{121}$, $\frac{1}{2783} a^{17} + \frac{35}{2783} a^{15} + \frac{87}{2783} a^{13} - \frac{39}{2783} a^{11} + \frac{962}{2783} a^{9} - \frac{582}{2783} a^{7} + \frac{502}{2783} a^{5} - \frac{38}{121} a^{3} + \frac{16}{121} a$, $\frac{1}{1275533101463039613073} a^{18} - \frac{172751591928006559}{1275533101463039613073} a^{16} - \frac{116603827456641366}{55457960933175635351} a^{14} + \frac{44289658927978667689}{1275533101463039613073} a^{12} - \frac{34180345914344235685}{1275533101463039613073} a^{10} - \frac{159516080666140524211}{1275533101463039613073} a^{8} + \frac{412506539739736243163}{1275533101463039613073} a^{6} - \frac{392370232145118911327}{1275533101463039613073} a^{4} + \frac{7770210750524868801}{55457960933175635351} a^{2} + \frac{11528406528821476584}{55457960933175635351}$, $\frac{1}{54847923362910703362139} a^{19} - \frac{62033352745994055}{453288622833972755059} a^{17} - \frac{1650837487334805104494}{54847923362910703362139} a^{15} - \frac{2449026931786694524951}{54847923362910703362139} a^{13} + \frac{599690397644183893988}{54847923362910703362139} a^{11} - \frac{26926919670908483133873}{54847923362910703362139} a^{9} - \frac{15380179079057229602204}{54847923362910703362139} a^{7} + \frac{20161450082303322140868}{54847923362910703362139} a^{5} - \frac{419393587511621347291}{2384692320126552320093} a^{3} - \frac{1114130701337950097152}{2384692320126552320093} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13041299003600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 56 conjugacy class representatives for t20n331 are not computed |
| Character table for t20n331 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.2670699013250048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |