Normalized defining polynomial
\( x^{20} - 4 x^{19} - 18 x^{18} + 42 x^{17} + 145 x^{16} + 162 x^{15} - 1070 x^{14} - 3576 x^{13} + 7575 x^{12} + 13658 x^{11} - 30898 x^{10} + 52 x^{9} + 46602 x^{8} - 96486 x^{7} + 40934 x^{6} + 176374 x^{5} - 168771 x^{4} - 88034 x^{3} + 110372 x^{2} + 13436 x - 20281 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3550520998942383746231172591517696=2^{30}\cdot 61^{5}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3487482302659490240702443510803617502869} a^{19} + \frac{112198571441640541942653928183043924405}{3487482302659490240702443510803617502869} a^{18} - \frac{1271888223823829850679504467394484230472}{3487482302659490240702443510803617502869} a^{17} - \frac{45384841491351151734946773950520174932}{3487482302659490240702443510803617502869} a^{16} + \frac{1575939061696356047913463129751176635234}{3487482302659490240702443510803617502869} a^{15} + \frac{1125811054578958215378202100061304435272}{3487482302659490240702443510803617502869} a^{14} - \frac{665611108549051476545496020754966484315}{3487482302659490240702443510803617502869} a^{13} - \frac{698529714541929724777399078193792142289}{3487482302659490240702443510803617502869} a^{12} - \frac{1204184902182332783422355111279535865454}{3487482302659490240702443510803617502869} a^{11} - \frac{1372067429817440094610418115246149026232}{3487482302659490240702443510803617502869} a^{10} + \frac{1186915956557239506679425110769852853871}{3487482302659490240702443510803617502869} a^{9} + \frac{977162914620190460104186848088087832519}{3487482302659490240702443510803617502869} a^{8} - \frac{1003938067557637482521195937401509805423}{3487482302659490240702443510803617502869} a^{7} + \frac{427286779072613826173162037777494508369}{3487482302659490240702443510803617502869} a^{6} - \frac{16465582789406599354389443797776792987}{268267869435345403130957193138739807913} a^{5} - \frac{1205945712531952559785073715026590388953}{3487482302659490240702443510803617502869} a^{4} + \frac{1713610609716239346494345829721252797846}{3487482302659490240702443510803617502869} a^{3} - \frac{358129478878836464523863832249520433274}{3487482302659490240702443510803617502869} a^{2} - \frac{461563995966499546329542865753250418904}{3487482302659490240702443510803617502869} a - \frac{176237675127313236172199887163135559831}{3487482302659490240702443510803617502869}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12036652920.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.5.24217.1, 10.10.238413666644992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||