Normalized defining polynomial
\( x^{20} - 6 x^{19} - 8 x^{18} + 90 x^{17} - 4 x^{16} - 531 x^{15} + 278 x^{14} + 1492 x^{13} - 1843 x^{12} - 1533 x^{11} + 6985 x^{10} - 2465 x^{9} - 13628 x^{8} + 10557 x^{7} + 10965 x^{6} - 12858 x^{5} - 756 x^{4} + 4520 x^{3} - 1110 x^{2} - 270 x + 95 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3410541143285770263976611328125=3^{8}\cdot 5^{11}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{3}{11} a^{17} - \frac{1}{11} a^{16} - \frac{5}{11} a^{15} - \frac{2}{11} a^{14} - \frac{1}{11} a^{13} + \frac{1}{11} a^{12} + \frac{5}{11} a^{11} + \frac{3}{11} a^{10} - \frac{3}{11} a^{9} - \frac{5}{11} a^{8} + \frac{2}{11} a^{7} + \frac{4}{11} a^{6} - \frac{3}{11} a^{5} - \frac{2}{11} a^{4} + \frac{2}{11} a^{3} - \frac{1}{11} a^{2} - \frac{5}{11} a + \frac{3}{11}$, $\frac{1}{5643661110765479223381751} a^{19} - \frac{100284863020751540847757}{5643661110765479223381751} a^{18} - \frac{719998226677019572769484}{5643661110765479223381751} a^{17} + \frac{92615533493443613074281}{513060100978679929398341} a^{16} + \frac{1898497023854040579513853}{5643661110765479223381751} a^{15} - \frac{2158305722540760919659920}{5643661110765479223381751} a^{14} + \frac{1090853717204011819016943}{5643661110765479223381751} a^{13} - \frac{34671867364237064918177}{513060100978679929398341} a^{12} - \frac{159806540286354770284187}{513060100978679929398341} a^{11} - \frac{1798514900428706117919818}{5643661110765479223381751} a^{10} - \frac{1036199251240930411108299}{5643661110765479223381751} a^{9} - \frac{129382347203753274298259}{297034795303446274914829} a^{8} - \frac{788300378351589688339112}{5643661110765479223381751} a^{7} - \frac{570774507259737742213671}{5643661110765479223381751} a^{6} - \frac{2230872866803814112467058}{5643661110765479223381751} a^{5} + \frac{1662706774131965670134016}{5643661110765479223381751} a^{4} + \frac{27065383011906116613069}{513060100978679929398341} a^{3} + \frac{209938236283955197161786}{513060100978679929398341} a^{2} - \frac{1751381070710909764776303}{5643661110765479223381751} a + \frac{24648896648468011683065}{297034795303446274914829}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 324130870.888 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n144 |
| Character table for t20n144 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||