Normalized defining polynomial
\( x^{20} - 42 x^{18} + 699 x^{16} - 5940 x^{14} + 27365 x^{12} - 65710 x^{10} + 67485 x^{8} - 4500 x^{6} - 21325 x^{4} - 3450 x^{2} + 25 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 2]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3398456149909543321600000000000000=2^{38}\cdot 5^{14}\cdot 1193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{10} + \frac{1}{5} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{40} a^{13} + \frac{3}{40} a^{11} - \frac{1}{8} a^{10} + \frac{9}{40} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{40} a^{14} - \frac{1}{40} a^{12} - \frac{1}{8} a^{11} - \frac{3}{40} a^{10} + \frac{1}{8} a^{9} - \frac{1}{40} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a$, $\frac{1}{40} a^{15} - \frac{1}{40} a^{12} + \frac{1}{20} a^{10} + \frac{1}{5} a^{9} + \frac{3}{20} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{40} a^{16} - \frac{1}{8} a^{11} + \frac{3}{40} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{40} a^{17} - \frac{1}{40} a^{12} + \frac{3}{40} a^{11} - \frac{3}{40} a^{10} + \frac{1}{8} a^{9} - \frac{9}{40} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{3}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{200047469680} a^{18} - \frac{1}{80} a^{17} + \frac{315471123}{100023734840} a^{16} - \frac{1}{80} a^{15} - \frac{86040746}{12502966855} a^{14} - \frac{1}{80} a^{13} + \frac{4255497209}{200047469680} a^{12} + \frac{1}{20} a^{11} + \frac{10134422893}{100023734840} a^{10} + \frac{1}{10} a^{9} - \frac{23883755267}{100023734840} a^{8} - \frac{4201290795}{40009493936} a^{6} + \frac{1}{16} a^{5} - \frac{1193430647}{5001186742} a^{4} - \frac{3}{16} a^{3} - \frac{5377420517}{20004746968} a^{2} + \frac{5}{16} a + \frac{2499005777}{40009493936}$, $\frac{1}{200047469680} a^{19} - \frac{373930225}{40009493936} a^{17} - \frac{1}{80} a^{16} + \frac{224788287}{40009493936} a^{15} - \frac{1}{80} a^{14} + \frac{877451919}{100023734840} a^{13} - \frac{1}{80} a^{12} + \frac{131632139}{5001186742} a^{11} + \frac{1}{20} a^{10} + \frac{465658301}{2500593371} a^{9} + \frac{1}{10} a^{8} - \frac{9202477537}{40009493936} a^{7} - \frac{2045665063}{40009493936} a^{5} - \frac{7}{16} a^{4} - \frac{8254247663}{40009493936} a^{3} + \frac{5}{16} a^{2} + \frac{10001579687}{20004746968} a - \frac{3}{16}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15188442027.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.728703488000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 1193 | Data not computed | ||||||